Cho G là trọng tâm của tam giác ABC và điểm M tùy ý. Chứng minh rằng vectơ MA + vectơ MB + vectơ MC = 3(vectơ MG)

Hoạt động 4 trang 90 Toán lớp 10 Tập 1: Cho G là trọng tâm của tam giác ABC và điểm M tùy ý. Chứng minh rằng MA+MB+MC=3MG

Trả lời

Giải Toán 10 Bài 5: Tích của một số với một vectơ - Cánh diều (ảnh 1)

Gọi D, E, F lần lượt là trung điểm của BC, AC, AB.

Do D là trung điểm của BC nên AB+AC=2AD.

Do E là trung điểm của AC nên BA+BC=2BE.

Do F là trung điểm của AB nên CA+CB=2CF.

Do đó AB+AC+BA+BC+CA+CB=2AD+2BE+2CF.

AB+BA+AC+CA+BC+CB=2AD+2BE+2CF.

2AD+2BE+2CF=0

AD+BE+CF=0

AD+BE+CF=0

ADBECF=0

DA+EB+FC=0

Do G là trọng tâm của tam giác ABC nên

GA=23DAGB=23EBGC=23FC.

Do đó GA+GB+GC=23DA+EB+FC=0.

Ta có MA+MB+MC=MG+GA+MG+GB+MG+GC

=3MG+GA+GB+GC

=3MG

Vậy MA+MB+MC=3MG.

Xem thêm lời giải bài tập SGK Toán lớp 10 Cánh Diều hay, chi tiết khác:

Bài 3: Khái niệm vectơ

Bài 4: Tổng và hiệu của hai vectơ

Bài 5: Tích của một số với một vectơ

Bài 6: Tích vô hướng của hai vectơ

Bài tập cuối chương 4

Chủ đề 1: Đo góc

Câu hỏi cùng chủ đề

Xem tất cả