Cho hình bình hành ABCD. Đặt vectơ AB = vectơ a, vectơ AD = vectơ b. Gọi G là trọng tâm của tam giác ABC. Biểu thị các vectơ AG, vectơ CG theo hai vectơ a, vectơ b

Bài 6 trang 92 Toán lớp 10 Tập 1Cho hình bình hành ABCD. Đặt AB=a,  AD=b. Gọi G là trọng tâm của tam giác ABC. Biểu thị các vectơ AG,  CG theo hai vectơ a,  b.

 

 

Trả lời

Giải Toán 10 Bài 5: Tích của một số với một vectơ - Cánh diều (ảnh 1)

Gọi M và N lần lượt là trung điểm của BC và AB.

Do ABCD là hình bình hành nên AD=BC=b.

Do M là trung điểm của BC nên BM = 12BC.

Hai vectơ BM và BC cùng hướng và BM = 12BC nên BM=12BC=b2.

Do N là trung điểm của AB nên NB = 12AB.

Hai vectơ BN và AB ngược hướng và NB = 12AB nên BN=12AB=a2.

Ta có AM=AB+BM=a+b2CN=CB+BN=ba2.

Do G là trọng tâm của tam giác ABC nên AG=23AM và CG=23CN.

Do đó AG=23a+b2=23a+13b và CG=23ba2=23b13a.

Xem thêm lời giải bài tập SGK Toán lớp 10 Cánh Diều hay, chi tiết khác:

Bài 3: Khái niệm vectơ

Bài 4: Tổng và hiệu của hai vectơ

Bài 5: Tích của một số với một vectơ

Bài 6: Tích vô hướng của hai vectơ

Bài tập cuối chương 4

Chủ đề 1: Đo góc

Câu hỏi cùng chủ đề

Xem tất cả