Cho tứ giác ABCD. Chứng minh rằng tứ giác đó là hình bình hành khi và chỉ khi vectơ AB = vectơ DC

Bài 4 trang 86 Toán lớp 10 Tập 1Cho tứ giác ABCD. Chứng minh rằng tứ giác đó là hình bình hành khi và chỉ khi AB=DC.

 

 

Trả lời

Giải Toán 10 Bài 1: Khái niệm vectơ - Chân trời sáng tạo (ảnh 1)

Phần thuận: ABCD là hình bình hành thì AB=DC.

Do ABCD là hình hình bình hành nên AB = DC và AB // DC.

Khi đó ta thấy hai vectơ AB và vectơ DC cùng hướng.

Mà AB = DC nên AB=DC.

Phần đảo: Tứ giác ABCD có AB=DC thì ABCD là hình bình hành.

Giá của vectơ AB là đường thẳng AB, giá của vectơ DC là đường thẳng DC.

Do AB=DC nên đường thẳng AB và đường thẳng DC song song hoặc trùng nhau.

Do A, B, C, D là 4 đỉnh của tứ giác nên hai đường thẳng AB và DC không trùng nhau.

Do đó đường thẳng AB và đường thẳng DC song song với nhau.

Mà AB=DC nên AB=DC hay AB = CD.

Tứ giác ABCD có AB // CD và AB = CD nên tứ giác ABCD là hình bình hành.

Xem thêm lời giải bài tập SGK Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:

Bài 3: Giải tam giác và ứng dụng thực tế

Bài tập cuối chương 4

Bài 1: Khái niệm vectơ

Bài 2: Tổng và hiệu của hai vectơ

Bài 3: Tích của một số với một vectơ

Bài 4: Tích vô hướng của hai vectơ

Câu hỏi cùng chủ đề

Xem tất cả