Cho tam giác nhọn ABC có ba đường cao AM, BN, CQ cắt nhau tại H. Chứng minh rằng ∆ANQ ᔕ ∆ABC

Bài 8 trang 75 SBT Toán 8 Tập 2: Cho tam giác nhọn ABC có ba đường cao AM, BN, CQ cắt nhau tại H.

a) Chứng minh rằng ∆ANQ ᔕ ∆ABC.

b) Đường thẳng QN cắt đường thẳng BC tại F. Chứng minh rằng FB . FC = FQ . FN.

c) Trên đoạn HB lầy điểm I sao cho AIC^=90°. Chứng minh rằng AI2 = AN . AC.

d) Trên đoạn HC lấy điểm K sao cho AKB^=90°. Chứng mình rằng ∆AIK cân.

Trả lời

Cho tam giác nhọn ABC có ba đường cao AM, BN, CQ cắt nhau tại H

Do đó ∆ANB ᔕ ∆AQC (g.g).

Suy ra ANAQ=ABAC hay ANAB=AQAC.

Xét ∆ANQ và ∆ABC có

ANAB=AQACBAC^ chung.

Do đó ∆ANQ ᔕ ∆ABC (c.g.c)

b) Xét ∆FQB và ∆FCN có

CFN^ chung; FQB^=FCN ^=AQN^.

Do đó ∆FQB ᔕ ∆FCN (g.g).

Suy ra FQFC=FBFN. Do đó FB . FC = FQ . FN (g.g).

c) Xét ∆ANI vuông tại N và ∆AIC vuông tại I có IAC^ chung.

Do đó ∆ANI ᔕ ∆AIC (g.g).

Suy ra ANAI=AIAC. Do đó AI2 = AN . AC (1)

d) Xét ∆AQK vuông tại Q và ∆AKB vuông tại K có BAK^ chung.

Do đó ∆AQK ᔕ ∆AKB (g.g).

Suy ra AQAK=AKAB. Do đó AK2 = AQ . AB (2)

 ANAB=AQAC nên suy ra AN . AC = AQ . AB (3)

Từ (1), (2) và (3) suy ra AI = AK.

Vậy nên ∆AIK cân tại A.

Xem thêm các bài giải sách bài tập Toán 8 Chân trời sáng tạo hay, chi tiết khác:

Bài 3: Các trường hợp đồng dạng của hai tam giác vuông

Bài 4: Hai hình đồng dạng

Bài tập cuối chương 8

Bài 1: Mô tả xác suất bằng tỉ số

Bài 2: Xác suất lí thuyết và xác suất thực nghiệm

Bài tập cuối chương 9

Câu hỏi cùng chủ đề

Xem tất cả