Cho tam giác ABC vuông tại A (AB < AC), M là điểm bất kì trên cạnh AC. Kẻ MD ⊥ BC (D ∈ BC). Chứng minh rằng ∆DMC ᔕ ∆ABC

Bài 6 trang 75 SBT Toán 8 Tập 2: Cho tam giác ABC vuông tại A (AB < AC), M là điểm bất kì trên cạnh AC. Kẻ MD ⊥ BC (D ∈ BC).

a) Chứng minh rằng ∆DMC ᔕ ∆ABC.

b) Gọi E là giao điểm của đường thẳng AB với đường thẳng MD.

Chứng minh rằng DB . DC = DE . DM.

c) Đường thẳng BM cắt EC tại K. Chứng minh rằng EKA^=EBC^.

Trả lời

Cho tam giác ABC vuông tại A (AB < AC), M là điểm bất kì trên cạnh AC

a) Xét ∆DMC vuông tại D và ∆ABC vuông tại A có BCA^ chung.

Do đó ∆DMC ᔕ ∆ABC (g.g).

b) Xét ∆DBE vuông tại D và ∆DMC vuông tại D có

DEB^=DCM^ (cùng phụ với ABC^).

Do đó ∆DBE ᔕ ∆DMC (g.g).

Suy ra DBDM=DEDC. Do đó DB . DC = DE . DM (đpcm).

c) Xét ∆BEC có đường cao CA và BE cắt nhau tại M, suy ra M là trực tâm ∆BEC.

Do đó BK ⊥ EC.

Xét ∆EAC vuông tại A và ∆EKB vuông tại K có BEC^ chung.

Do đó ∆EAC ᔕ ∆EKB (g.g)

Suy ra EAEK=ECEB hay EAEC=EKEB.

Xét ∆EAK và ∆ECB có EAEC=EKEB và BEC^ chung.

Do đó ∆EAK ᔕ ∆ECB (c.g.c).

Suy ra EKA^=EBC^ (các góc tương ứng).

Xem thêm các bài giải sách bài tập Toán 8 Chân trời sáng tạo hay, chi tiết khác:

Bài 3: Các trường hợp đồng dạng của hai tam giác vuông

Bài 4: Hai hình đồng dạng

Bài tập cuối chương 8

Bài 1: Mô tả xác suất bằng tỉ số

Bài 2: Xác suất lí thuyết và xác suất thực nghiệm

Bài tập cuối chương 9

Câu hỏi cùng chủ đề

Xem tất cả