Cho tam giác ABC, điểm D thuộc cạnh BC sao cho DB/DC = AB/AC. Chứng minh AD là tia phân giác của góc BAC

Luyện tập 4 trang 68 Toán 8 Tập 2: Cho tam giác ABC, điểm D thuộc cạnh BC sao cho DBDC=ABAC. Chứng minh AD là tia phân giác của góc BAC.

Trả lời

Luyện tập 4 trang 68 Toán 8 Tập 2 Cánh diều | Giải Toán 8

Từ B kẻ đường thẳng song song với AC, cắt AD tại K.

Vì BK // AC nên theo hệ quả của định lí Thalès, ta có: DBDC=BKAC

Mà DBDC=ABAC (giả thiết) nên BKAC=ABAC, do đó BK = AB.

Khi đó tam giác ABK cân tại B nên BAK^=BKA^

Mà BK // AC nên BKA^=KAC^ (hai góc so le trong)

Suy ra BAK^=KAC^

Vậy AD là đường phân giác trong tam giác BAC.

Xem thêm các bài giải SGK Toán lớp 8 Cánh Diều hay, chi tiết khác:

Câu hỏi cùng chủ đề

Xem tất cả