• Tứ giác ABCD là hình vuông suy ra \(\widehat {ACB} = 45^\circ ,OB = OC,\widehat {BOC} = \widehat {DOC} = 90^\circ \).
Do BE // AC suy ra \(\widehat {OBF} = \widehat {DOC}\) (hai góc đồng vị) và \(\widehat {CBE} = \widehat {ACB} = 45^\circ \) (hai góc so le trong).
Xét ∆DBC vuông tại C có: \(\widehat {CDB} + \widehat {CBD} = 90^\circ \)
Suy ra \(\widehat {CDB} = 90^\circ - \widehat {CBD} = 90^\circ - 45^\circ = 45^\circ \)
Xét ∆BCE vuông tại C có: \(\widehat {CBE} + \widehat {CEB} = 90^\circ \)
Suy ra \(\widehat {CBE} = 90^\circ - \widehat {CBE} = 90^\circ - 45^\circ = 45^\circ \)
Do đó \(\widehat {CDB} = \widehat {BEC} = 45^\circ \)
Tam giác BDE có: \(\widehat {DBE} = \widehat {DBC} + \widehat {CBE} = 45^\circ + 45^\circ = 90^\circ \) và \(\widehat {CDB} = \widehat {BEC} = 45^\circ \)
Suy ra tam giác BDE vuông cân tại B nên BD = BE
Tam giác BCE vuông tại C có \(\widehat {CBE} = \widehat {CEB} = 45^\circ \), suy ra nên là tam giác vuông cân tại C. Do đó BC = EC
Xét ∆BCF và ∆ECF có:
BC = EC, BF = EF (do F là trung điểm của BE), cạnh CF chung
Do đó ∆BCF = ∆ECF (c.c.c). Suy ra \(\widehat {BFC} = \widehat {EFC} = 90^\circ \).
Tứ giác BOCF có \(\widehat {BOC} = \widehat {OBF} = \widehat {BFC} = 90^\circ \) nên BOCF là hình chữ nhật.
Hình chữ nhật BOCF có OB = OC nên BOCF là hình vuông.
• Ta có: BC = CD và BC = CE nên CD = CE.
Tứ giác BDKE có hai đường chéo BK và DE cắt nhau tại trung điểm C của mỗi đường nên BDKE là hình bình hành.
Hình bình hành BDKE có \(\widehat {DBE} = 90^\circ \) nên BDKE là hình chữ nhật.
Hình chữ nhật BDKE có BD = BE nên BDKE là hình vuông.