Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D, AB = AD = 2a, CD = a

Bài 11 trang 87 Toán 11 Tập 2: Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D, AB = AD = 2a, CD = a; số đo góc nhị diện [S, BC, A] bằng 60°. Gọi I là trung điểm của cạnh AD. Biết hai mặt phẳng (SBI) và (SCI) cùng vuông góc với mặt phẳng (ABCD). Tính thể tích khối chóp S.ABCD theo a.

Trả lời

Bài 11 trang 87 Toán 11 Tập 2 Chân trời sáng tạo | Giải Toán 11

Kẻ IH ⊥ BC

Ta có:

(SIB)(ABCD)(SIC)(ABCD)(SIB)(SIC)=SI}SI(ABCD)

Suy ra: SI ⊥ BC mà BC ⊥ IH ⇒ BC ⊥ (SHI)  BC ⊥ SH.

Lại có: [S,BC,A]=SHI^=60°.

SABCD=12AB+CDAD=3a2;

Ta có: I là trung điểm AD  AI=ID=12AD=a.

SABI=12.AB.AI=a2

SIDC=12.CD.ID=a22

SIBC=SABCDSAIBSCID=3a22

Gọi M là trung điểm của AB.

BM=12AB=a, CM = AD = 2a BC=BM2+CM2=a5 ;

IH=2SIBCBC=3a55 SI=IH.tan60°=3a155.

Vậy VS.ABCD=13.SI.SABCD=3a3155.

Xem thêm các bài giải SGK Toán 11 Chân trời sáng tạo hay, chi tiết khác:

Câu hỏi cùng chủ đề

Xem tất cả