Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B và SA ⊥ (ABC). Chứng minh rằng (SBC) ⊥ (SAB)
1.1k
07/12/2023
Bài 3 trang 61 SBT Toán 11 Tập 2: Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B và SA ⊥ (ABC).
a) Chứng minh rằng (SBC) ⊥ (SAB).
b) Gọi M là trung điểm của AC. Chứng minh rằng (SBM) ⊥ (SAC).
Trả lời
a)Ta có: BC ⊥ AB (giả thiết);
Đồng thời BC ⊥ SA (vì SA ⊥ (ABC)).
BC ⊥ (SAB)
(SBC) ⊥ (SAB).
b)Vì tam giác ABC là tam giác vuông cân tại B nên BM ⊥ AC.
Mà BM ⊥ SA (vì SA ⊥ (ABC))
BM ⊥ (SAC) (1)
BM (SBM) (2)
Từ (1) và (2) suy ra (SBM) ⊥ (SAC).
Xem thêm các bài giải SBT Toán lớp 11 Chân trời sáng tạo hay, chi tiết khác:
Bài 1: Hai đường thẳng vuông góc
Bài 2: Đường thẳng vuông góc với mặt phẳng
Bài 3: Hai mặt phẳng vuông góc
Bài 4: Khoảng cách trong không gian
Bài 5: Góc giữa đường thẳng và mặt phẳng. Góc nhị diện
Bài tập cuối chương 8