Sách bài tập Toán 11 Bài 4: Khoảng cách trong không gian
Lời giải:
Gọi E là trung điểm của BC thì BC ⊥ AE (vì ∆ABC đều).
Ta có BC ⊥ SA và BC ⊥ AE BC ⊥ (SAE).
(SBC) ⊥ (SAE).
Trong mặt phẳng (SAE), vẽ AF ⊥ SE (F SE).
Suy ra AF ⊥ (SBC) hay d(A, (SBC))=AF.
Xét ∆SAE vuông tại A, ta có:
.
Vậy .
a) Tính khoảng cách từ S đến mặt phẳng (ABC).
b) Tính khoảng cách từ M đến mặt phẳng (SAG).
Lời giải:
a)Do S.ABC là hình chóp tam giác đều nên SG ⊥ (ABC) hay d(S, (ABC))=SG.
Tam giác ABC là tam giác đều cạnh 3a nên
Tam giác SAG vuông tại G nên
Vậy d(S, (ABC)) = a.
b) Vì SC (SAG) = S nên
Gọi I là trung điểm của BC.
Ta có: CB ⊥ AI và CB ⊥ SG
CB ⊥ (SAG) và CB (SAG) = I.
Do đó .
Vậy .
Lời giải:
B'D' A'C' tại O.
Gọi P là trung điểm của OC'.
Vě OH ⊥ MP, HE // NP, EF // OH.
ABCD là hình lập phương, ta dễ dàng có được: B'D' ⊥ (A'C'CA).
Hay B'D' ⊥ OH, mà OH // EF
EF ⊥ B'D' (1).
NP // B'D' NP ⊥ (A'C'CA) hay NP ⊥ OH.
Đồng thời OH ⊥ MP.
OH ⊥ (MNP) hay OH ⊥ MN EF ⊥ MN (2)
Từ (1) và (2) ta có: d(MN, B'D') = EF = OH.
Xét tam giác vuông MOP, ta có OM = a, OP = , suy ra OH = .
Vậy d(MN, B'D') = .
Lời giải:
Gọi O là trung điểm AC, J là trung điểm OD.
Vě OH ⊥ BJ, HE // AC, EF // OH.
Có IJ // AC nên AC // (BIJ).
d(AC, BI) = d(AC, (BIJ)) = d(O, (BIJ)).
Do ABCD là tứ diện đều nên ta dễ dàng nhận ra AC ⊥ (OBD).
AC ⊥ OH (OH OBD).
AC // IJ, OH ⊥ IJ.
Kết hợp giả thiết, suy ra OH ⊥ (BIJ) hay d(O, (BIJ)) = OH.
Xét tam giác OBD cân tại O, ta có
.
Áp dụng công thức Heron, ta có:
Ta tính được OH = .
Vậy khoảng cách giữa hai đường thẳng AC và BI là .
Lời giải:
Ta có: (SAC) ⊥ (ABC) và (SAC) (ABC) = AC.
Trong mặt phẳng (SAC), vẽ SH ⊥ AC (H AC) thì SH ⊥ (ABC).
Gọi I, K lần lượt là hình chiếu vuông góc của H lên cạnh AB và BC.
Khi đó, ta có
Mà nên HI = HK.
Suy ra tử giác BIHK là hình vuông nên H là trung điểm cạnh AC.
Khi đó tử giác BIHK là hình vuông cạnh .
SH = HI . tan 60° = .
.
Vậy thể tích V của khối chóp S.ABC là .
Lời giải:
Ta có:
Lại có:
Suy ra .
Vậy .
Bài 7 trang 68 SBT Toán 11 Tập 2: Cho hình lăng trụ đều có cạnh đáy bằng a. Biết . Tính .
Lời giải:
Gọi I là trung điểm của BC và H là hình chiếu của A trên A'I.
Ta có: BC ⊥ AI và BC ⊥ AA' BC ⊥ (A'AI) (A'BC) ⊥ (A'AI).
Mặt khác (AB'C) (A'AI) = A'I và AH ⊥ A'I.
Nên
∆ABC đều cạnh a và
Xét tam giác A'AI vuông tại A, ta có:
.
Do đó
Vậy .
Lời giải:
Ta có:
a) Khối chóp cụt đều .
b) Khối lăng trụ .
Lời giải:
a)
Áp dụng công thức: ,
Do ABC, A¢B¢C¢ là các tam giác đều nên: , thay vào công thức trên ta có:
.
b)Áp dụng công thức: , với
Ta có: .
Lời giải:
Ta có: , suy ra
Trong tam giác vuông C'CH có:
Nên
Thể tích của cái sọt đựng đồ là:
(cm3).
Xem thêm các bài giải SBT Toán lớp 11 Chân trời sáng tạo hay, chi tiết khác: