Sách bài tập Toán 11 Bài 2: Đường thẳng vuông góc với mặt phẳng
a) Chứng minh rằng SO ⊥ (ABCD).
b) Tính độ dài đường cao xuất phát từ đỉnh A của tam giác SAC.
Lời giải:
a)Từ giả thiết, dễ dàng nhận thấy ∆SAC và ∆SBD là các tam giác cân.
Ta có:
Do đó SO ⊥ (ABCD)
b)Ta có: AC = 2a, OC = a,
Vẽ đường cao AH của ∆SAC.
Ta có:
Vậy độ dài đường cao xuất phát từ đỉnh A của tam giác SAC bằng .
Lời giải:
Theo giả thiết:
Suy ra CD ⊥AHB
Do đó CD ⊥ BH(1)
Chứng minh tương tự: CH ⊥ BD (2)
Từ (1) và (2) suy ra H là trực tâm của ∆BCD.
Do đó DH ⊥ BC.
Lại có AH ⊥ BC suy ra BC ⊥ (AHD).
Vậy H là trực tâm của ∆BCD và AD ⊥ BC.
a) Chứng minh rằng AH ⊥ (BCD).
b) Gọi G, K lần lượt là trọng tâm của tam giác ABC và DBC. Chứng minh rằng GK ⊥ (ABC).
Lời giải:
a)Tam giác ABC cân tại A Trung tuyến AM ⊥ BC.
Lại có DA ⊥ (ABC) DA ⊥ BC.
BC ⊥ (ADM) BC ⊥ AH. (1)
Theo giả thiết: AH ⊥ DM. (2)
Từ (1) và (2) suy ra AH ⊥ (BCD).
b)Ta có: nên GK // AD (theo định lí Thalès).
Ta lại có AD ⊥ (ABC) suy ra GK ⊥ (ABC).
a) Chứng minh rằng SO ⊥ (ABCD).
b) Gọi I, J lần lượt là trung điểm của BA, BC. Chứng minh rằng IJ ⊥ (SBD).
c) Chứng minh rằng BD ⊥ (SAC).
Lời giải:
a)Từ giả thiết, dễ dàng nhận thấy ∆SAC và ∆SBD là các tam giác cân.
Ta có:
Do đó SO ⊥ (ABCD)
b)Ta có AC ⊥ BD và AC ⊥ SO, suy ra AC ⊥ (SBD).
IJ là đường trung bình của ∆ABC nên IJ // AC.
Do đó IJ ⊥ (SBD).
c)Ta có BD ⊥ AC (ABCD là hình thoi) và BD ⊥ SO, suy ra BD ⊥ (SAC).
Xem thêm các bài giải SBT Toán lớp 11 Chân trời sáng tạo hay, chi tiết khác: