Cho hình bình hành ABCD. Ở phía ngoài hình bình hành, vẽ các hình vuông ABEF và ADGH (Hình 26)

Bài 33 trang 102 SBT Toán 8 Tập 1: Cho hình bình hành ABCD. Ở phía ngoài hình bình hành, vẽ các hình vuông ABEF và ADGH (Hình 26). Chứng minh:

a)  ΔAHF=ΔADC

b)  ACHF.Sách bài tập Toán 8 Bài 7 (Cánh diều): Hình vuông (ảnh 3)

Trả lời

Sách bài tập Toán 8 Bài 7 (Cánh diều): Hình vuông (ảnh 4)

Gọi K là giao điểm của AC và HF

a) Do ABEF và ADGH đều là hình vuông nênBAF^=DAH^=90,AH=BA,AH=DA

Do ABCD là hình bình hành nên BA=DC. Suy ra AF=DC

Ta chứng minh được HAF^+DAB^=180 và ADC^+DAB^=180

Suy ra HAF^=ADC^

Xét hai tam giác HAF và ADC, ta có: AH=DA,HAF^=ADC^,AF=DA

Suy ra ΔHAF=ΔADC (c.g.c)

b) Ta có: HAK^+DAH^+DAC^=CAK^=180 và DAH^=90 nên HAK^+DAC^=90

Mà AHF^=DAC^ (vì ΔHAF=ΔADC), suy ra HAK^+AHF^=90

Trong tam giác AHK, ta có: AKH^+HAK^+AHF^=180. Suy ra AKH^=90

Vậy AKHK hai ACHF.

Xem thêm các bài giải SBT Toán 8 Cánh diều hay, chi tiết khác:

Bài 3: Hình thang cân

Bài 4: Hình bình hành

Bài 5: Hình chữ nhật

Bài 6: Hình thoi

Bài 7: Hình vuông

Bài tập cuối chương 5 trang 103

Câu hỏi cùng chủ đề

Xem tất cả