Cho hai hàm số y = f(x) = 2x và y = g(x) = x/(x+1)
145
16/06/2023
Hoạt động khám phá 2 trang 72 Toán 11 Tập 1: Cho hai hàm số y = f(x) = 2x và y = g(x) = .
a) Giả sử (xn) là dãy số bất kì thỏa mãn xn ≠ – 1 với mọi n và xn → 1 khi n → +∞. Tìm giới hạn lim[f(xn) + g(xn)].
b) Từ đó, tìm giới hạn , và so sánh với .
Trả lời
+) Hàm số y = f(x) = 2x xác định trên .
Dãy số (xn) bất kì thỏa mãn xn ≠ – 1 với mọi n và xn → 1 khi n → +∞, ta có:
limf(xn) = lim(2xn) = 2.limxn = 2.1 = 2.
Suy ra = 2.
+) Hàm số y = g(x) = xác định trên ℝ \ {2}.
Dãy số (xn) bất kì thỏa mãn xn ≠ – 1 với mọi n và xn → 1 khi n → +∞, ta có:
limg(xn) =.
Suy ra .
a) Ta có: lim[f(xn) + g(xn)] = limf(xn) + limg(xn) = .
b) Ta có nên .
Ta lại có: .
Vì vậy .
Xem thêm các bài giải SGK Toán 11 Chân trời sáng tạo hay, chi tiết khác:
Bài tập cuối chương 2
Bài 1: Giới hạn của dãy số
Bài 2: Giới hạn của hàm số
Bài 3: Hàm số liên tục
Bài tập cuối chương 3
Bài 1: Điểm, đường thẳng và mặt phẳng trong không gian