Cho dãy số (un) xác định bằng hệ thức truy hồi u1 = 1, un + 1 = un + (n + 1). a) Mỗi
855
08/09/2023
Bài 2.5 trang 34 SBT Toán 11 Tập 1: Cho dãy số (un) xác định bằng hệ thức truy hồi
u1 = 1, un + 1 = un + (n + 1).
a) Mỗi số hạng của dãy số này gọi là một số tam giác. Viết bảy số tam giác đầu.
b) Biết rằng 1 + 2 + ... + n = . Hãy chứng tỏ công thức của số hạng tổng quát là .
c) Chứng minh rằng un + 1 + un = (n + 1)2, tức là tổng của hai số tam giác liên tiếp là một số chính phương.
Trả lời
a) Bảy số tam giác đầu là u1 = 1; u2 = u1 + (1 + 1) = 1 + 2 = 3;
u3 = u2 + (2 + 1) = 3 + 3 = 6; u4 = u3 + (3 + 1) = 6 + 4 = 10;
u5 = u4 + (4 + 1) = 10 + 5 = 15; u6 = u5 + (5 + 1) = 15 + 6 = 21;
u7 = u6 + (6 + 1) = 21 + 7 = 28.
b) Từ kết quả ở câu a, ta nhận thấy u1 = 1, u2 = 1 + 2, u3 = 1 + 2 + 3, u4 = 1 + 2 + 3 + 4, ...
Từ đó suy ra un + 1 = 1 + 2 + ... + n + (n + 1)
.
Vậy .
c) Theo công thức ở câu b) ta có:
.
Vậy tổng của hai số tam giác liên tiếp là một số chính phương.
Xem thêm các bài giải SBT Toán lớp 11 Kết nối tri thức hay, chi tiết khác:
Bài 4: Phương trình lượng giác cơ bản
Bài tập cuối chương 1
Bài 5: Dãy số
Bài 6: Cấp số cộng
Bài 7: Cấp số nhân
Bài tập cuối chương 2