Cho dãy số (un), biết u1 = – 2, un+1 = n+1/2n với n ∈ ℕ*. Đặt Vn= un/  với n ∈ ℕ*. a) Chứng minh

Bài 57 trang 57 SBT Toán 11 Tập 1Cho dãy số (un), biết u1 = – 2, un+1=n+12nun  với n ∈ ℕ*. Đặt vn=unn  với n ∈ ℕ*.

a) Chứng minh rằng dãy số (vn) là cấp số nhân. Tìm số hạng đầu, công bội của cấp số nhân đó.

b) Tìm công thức của un tính theo n.

Trả lời

a) Ta có v1=u11=21=2 ;

vn+1=un+1n+1=n+12nun:n+1=12.unn=12vn với mọi n ∈ ℕ*.

Vậy dãy số (vn) là một cấp số nhân có số hạng đầu v1 = – 2 và công bội q=12 .

b) Từ kết quả của câu a) suy ra vn=v1.qn1=2.12n1=12n2 .

Từ vn=unn , suy ra un=n.vn=n.12n2  với mọi n ≥ 2.

Xem thêm lời giải bài tập SBT Toán 11 Cánh diều hay, chi tiết khác:

Bài 2: Cấp số cộng

Bài 3: Cấp số nhân

Bài tập cuối chương 2

Bài 1: Giới hạn của dãy số

Bài 2: Giới hạn của hàm số

Bài 3: Hàm số liên tục

Câu hỏi cùng chủ đề

Xem tất cả