Cho các dãy số (an), (bn), (cn), (dn) được xác định như sau: +) a1 = 0; a2 = 1; a3 = 2; a4 = 3; a5 = 4
325
15/06/2023
Hoạt động khám phá 3 trang 46 Toán 11 Tập 1: Cho các dãy số (an), (bn), (cn), (dn) được xác định như sau:
+) a1 = 0; a2 = 1; a3 = 2; a4 = 3; a5 = 4.
+) bn = 2n.
+)
+) dn là chu vi của đường tròn có bán kính n.
Tính bốn số hạng đầu tiên của các dãy số trên.
Trả lời
+) Bốn số hạng đầu của dãy (an) là: a1 = 0; a2 = 1; a3 = 2; a4 = 3.
+) Bốn số hạng đầu của dãy (bn) là:
b1 = 2.1 = 2;
b2 = 2.2 = 4;
b3 = 2.3 = 6;
b4 = 2.4 = 8.
+) Bốn số hạng đầu của dãy (Cn) là:
c1 = 1;
c2 = c1 + 1 = 1 + 1 = 2;
c3 = c2 + 1 = 2 + 1 = 3;
c4 = c3 + 1 = 3 + 1 = 4.
+) dn là chu vi của đường tròn có bán kính n được xác định bởi công thức: dn = 2πn.
Khi đó bốn số hạng đầu của dãy (dn) là:
d1 = 2π.1 = 2π;
d2 = 2π.2 = 4π;
d3 = 2π.3 = 6π;
d4 = 2π.4 = 8π.
Xem thêm các bài giải SGK Toán 11 Chân trời sáng tạo hay, chi tiết khác:
Bài 5: Phương trình lượng giác
Bài tập cuối chương 1
Bài 1: Dãy số
Bài 2: Cấp số cộng
Bài 3: Cấp số nhân
Bài tập cuối chương 2