Bác Dũng muốn uốn tấm tôn phẳng có dạng hình chữ nhật với bề ngang 32 cm thành một rãnh dẫn nước bằng cách chia tấm tôn đó thành ba phần rồi gấp hai bên lại theo một góc vuông (Hình 25)

Câu hỏi khởi động trang 49 Toán lớp 10 Tập 1Bác Dũng muốn uốn tấm tôn phẳng có dạng hình chữ nhật với bề ngang 32 cm thành một rãnh dẫn nước bằng cách chia tấm tôn đó thành ba phần rồi gấp hai bên lại theo một góc vuông (Hình 25). Để đảm bảo kĩ thuật, diện tích mặt cắt ngang của rãnh dẫn nước phải lớn hơn hoặc bằng 120 cm2.

Bác Dũng muốn uốn tấm tôn phẳng có dạng hình chữ nhật với bề ngang 32 cm

Rãnh dẫn nước phải có độ cao ít nhất là bao nhiêu xăng-ti-mét?

 

Trả lời

Sau khi học xong bài này ta giải được bài toán này như sau:

Tiến hành uốn tấm tôn ta được một rãnh dẫn nước có mặt cắt ngang với kích thước x (cm) và 32 – x (cm)

Khi đó diện tích mặt cắt ngang là (32 – 2x)x (cm2).

Để đảm bảo kĩ thuật, diện tích mặt cắt ngang của rãnh dẫn nước phải lớn hơn hoặc bằng 120 cm2 nên ta có:

(32 – 2x)x ≥ 120  – 2x2 + 32x – 120 ≥ 0.

Xét tam thức bậc hai – 2x2 + 32x – 120 có:

∆’ = 162 – (-2).(-120) = 16 > 0

Suy ra phương trình có hai nghiệm x1 = 6, x2 = 10.

Ta lại có hệ số a = – 2 < 0, bảng xét dấu:

Giải Toán 10 Bài 4: Bất phương trình bậc hai một ẩn - Cánh diều (ảnh 1)

Suy ra – 2x2 + 32x – 120 ≥ 0 với mọi x  [6; 10].

Vậy rãnh dẫn nước phải có độ cao ít nhất là 6 cm.

Xem thêm lời giải bài tập SGK Toán lớp 10 Cánh Diều hay, chi tiết khác:

Bài 2: Hàm số bậc hai. Đồ thị hàm số bậc hai và ứng dụng

Bài 3: Dấu của tam thức bậc hai

Bài 4: Bất phương trình bậc hai một ẩn

Bài 5: Hai dạng phương trình quy về phương trình bậc hai

Bài tập cuối chương 3

Bài 1: Giá trị lượng giác của một góc từ 0 độ đến 180 độ. Định lý côsin và định lý sin trong tam giác

Câu hỏi cùng chủ đề

Xem tất cả