Giải các bất phương trình sau: a) 2x^2 – 5x + 3 > 0

Bài 3 trang 54 Toán lớp 10 Tập 1Giải các bất phương trình sau:

a) 2x2 – 5x + 3 > 0;

b) – x2 – 2x + 8 ≤ 0; 

c) 4x2 – 12x + 9 < 0; 

d) – 3x2 + 7x – 4 ≥ 0.

 

Trả lời

a) Tam thức bậc hai 2x– 5x + 3 có:

∆ = (-5)2 – 4.2.3 = 25 – 24 = 1 > 0

Do đó tam thức có hai nghiệm x1 = 1, x2 = 32 và có hệ số a = 2 > 0.

Khi đó ta có bảng xét dấu:

Giải Toán 10 Bài 4: Bất phương trình bậc hai một ẩn - Cánh diều (ảnh 1)

Tam thức 2x2 – 5x + 3 mang dấu “+” khi x < 1 hoặc x > 32.

Hay 2x2 – 5x + 3 > 0 khi x < 1 hoặc x > 32.

Vậy tập nghiệm của bất phương trình 2x2 – 5x + 3 > 0 là ;132;+.

b)

Tam thức bậc hai – x2 – 2x + 8 có:

∆’ = (-1)2 – (-1).8 = 1 + 8 = 9 > 0

Suy ra tam thức có hai nghiệm là x1 = – 4, x2 = 2 và hệ số a = – 1 < 0.

Khi đó ta có bảng xét dấu:

Giải Toán 10 Bài 4: Bất phương trình bậc hai một ẩn - Cánh diều (ảnh 1)

Tam thức – x2 – 2x + 8 không dương khi x ≤ – 4 hoặc x ≥ 2.

Hay – x2 – 2x + 8 ≤ 0 khi x ≤ – 4 hoặc x ≥ 2.

Vậy tập nghiệm của bất phương trình – x2 – 2x + 8 là (– ∞; – 4]  [2; + ∞).

c)

Tam thức bậc hai 4x2 – 12x + 9 có ∆’ = (– 6)2 – 4 . 9 = 0.

Do đó tam thức trên có nghiệm kép là x = 32.

Ta có hệ số a = 4 > 0.

Khi đó ta có bảng xét dấu:

Giải Toán 10 Bài 4: Bất phương trình bậc hai một ẩn - Cánh diều (ảnh 1)

Tam thức 4x2 – 12x + 9 > 0 với mọi x\32 và 4x2 – 12x + 9 = 0 tại x = 32.

Do đó không tồn tại giá trị nào của x để 4x2 – 12x + 9 < 0

Vậy bất phương trình đã cho vô nghiệm.

d)

Tam thức bậc hai – 3x2 + 7x – 4 có:

∆ = 72 – 4.(-3).(-4) = 49 – 48 == 1 > 0

Suy ra tam thức có hai nghiệm x1 = 1, x2 = 43 và hệ số a = – 3 < 0.

Khi đó ta có bảng xét dấu:

Giải Toán 10 Bài 4: Bất phương trình bậc hai một ẩn - Cánh diều (ảnh 1)

Tam thức – 3x2 + 7x – 4 không âm khi 1x43.

Vậy tập nghiệm của bất phương trình – 3x2 + 7x – 4 ≥ 0 là 1;  43.

Xem thêm lời giải bài tập SGK Toán lớp 10 Cánh Diều hay, chi tiết khác:

Bài 2: Hàm số bậc hai. Đồ thị hàm số bậc hai và ứng dụng

Bài 3: Dấu của tam thức bậc hai

Bài 4: Bất phương trình bậc hai một ẩn

Bài 5: Hai dạng phương trình quy về phương trình bậc hai

Bài tập cuối chương 3

Bài 1: Giá trị lượng giác của một góc từ 0 độ đến 180 độ. Định lý côsin và định lý sin trong tam giác

Câu hỏi cùng chủ đề

Xem tất cả