Tìm m thực để phương trình 2x^2 + (m + 1)x + m – 8 = 0 có nghiệm

Bài 4 trang 54 Toán lớp 10 Tập 1Tìm m để phương trình 2x2 + (m + 1)x + m – 8 = 0 có nghiệm.

 

Trả lời

Phương trình 2x2 + (m + 1)x + m – 8 = 0 (1) là phương trình bậc hai một ẩn có: a = 2, b = m + 1, c = m – 8 (m là tham số)

∆ = (m + 1)2 – 4 . 2 . (m – 8) = m2 + 2m + 1 – 8m + 64 = m2 – 6m + 65.

Để phương trình (1) có nghiệm khi và chỉ khi ∆ ≥ 0  m2 – 6m + 65 ≥ 0

Xét tam thức bậc hai m2 – 6m + 65 có:

m = (– 6)2 – 4 . 1 . 65 = – 224 < 0 và hệ số am = 1 > 0.

Sử dụng định lý về dấu của tam thức bậc hai, tam thức m2 – 6m + 65 mang dấu dương với mọi m.

Do đó m2 – 6m + 65 > 0 với mọi số thực m.

Vậy phương trình đã cho luôn có nghiệm với mọi giá trị thực của m.

Xem thêm lời giải bài tập SGK Toán lớp 10 Cánh Diều hay, chi tiết khác:

Bài 2: Hàm số bậc hai. Đồ thị hàm số bậc hai và ứng dụng

Bài 3: Dấu của tam thức bậc hai

Bài 4: Bất phương trình bậc hai một ẩn

Bài 5: Hai dạng phương trình quy về phương trình bậc hai

Bài tập cuối chương 3

Bài 1: Giá trị lượng giác của một góc từ 0 độ đến 180 độ. Định lý côsin và định lý sin trong tam giác

Câu hỏi cùng chủ đề

Xem tất cả