Ba số 2/(b-a), 1/b, 2/(b-c) theo thứ tự lập thành cấp số cộng. Chứng minh rằng ba số a, b, c theo thứ tự lập thành cấp số nhân
1.4k
15/06/2023
Bài 4 trang 60 Toán 11 Tập 1: Ba số theo thứ tự lập thành cấp số cộng. Chứng minh rằng ba số a, b, c theo thứ tự lập thành cấp số nhân.
Trả lời
Ta có: là một cấp số cộng nên ta có:
(-a-b)(b-c) = (b+c)(b-a)
⇔ – ab + ac – b2 + bc = b2 – ab + bc – ac
⇔ 2b2 – 2ac = 0
⇔ b2 = ac.
Xem thêm các bài giải SGK Toán 11 Chân trời sáng tạo hay, chi tiết khác:
Bài 1: Dãy số
Bài 2: Cấp số cộng
Bài 3: Cấp số nhân
Bài tập cuối chương 2
Bài 1: Giới hạn của dãy số
Bài 2: Giới hạn của hàm số