Ba số 2/(b-a), 1/b, 2/(b-c) theo thứ tự lập thành cấp số cộng. Chứng minh rằng ba số a, b, c theo thứ tự lập thành cấp số nhân

Bài 4 trang 60 Toán 11 Tập 1: Ba số 2ba,1b,2bc theo thứ tự lập thành cấp số cộng. Chứng minh rằng ba số a, b, c theo thứ tự lập thành cấp số nhân.

 

 

 

Trả lời

Ta có: 2ba,1b,2bc là một cấp số cộng nên ta có:

1b2ba=2bc1b

Bài 4 trang 60 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

 (-a-b)(b-c) = (b+c)(b-a)

⇔ – ab + ac – b2 + bc = b2 – ab + bc – ac

⇔ 2b2 – 2ac = 0

⇔ b2 = ac.

Xem thêm các bài giải SGK Toán 11 Chân trời sáng tạo hay, chi tiết khác:

Bài 1: Dãy số

Bài 2: Cấp số cộng

Bài 3: Cấp số nhân

Bài tập cuối chương 2

Bài 1: Giới hạn của dãy số

Bài 2: Giới hạn của hàm số

Câu hỏi cùng chủ đề

Xem tất cả