Giải SBT Toán 8 (Chân trời sáng tạo) Bài 4 : Phân tích đa thức thành nhân tử

Với giải sách bài tập Toán 8 (Chân trời sáng tạo) Bài 4 : Phân tích đa thức thành nhân tử hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 8 . Mời các bạn đón xem:

Giải SBT Toán 8 Bài 4: Phân tích đa thức thành nhân tử

Bài 1 trang 16 SBT Toán 8 Tập 1: Phân tích các đa thức sau thành nhân tử:

a) 3x2 + 6xy;

b) 5(y – 3) – x(3 – y);

c) 2x3 – 6x2;

d) x4y2 + xy3;

e) xy – 2xyz + x2y;

g) (x + y)3 – x(x + y)2.

Lời giải:

a) 3x2 + 6xy = 3x.x + 3x.2y = 3x(x + 2y).

b) 5(y – 3) – x(3 – y)

= 5(y – 3) + x(y ‒ 3)

= (y ‒ 3)(5 + x).

c) 2x3 – 6x2 = 2x2.x‒ 2x2.3 = 2x2(x ‒ 3).

d) x4y2 + xy3 = xy2.x3 + xy2.y = xy2(x3 + y).

e) xy – 2xyz + x2y

= xy ‒ xy.2z + xy.x

= xy(1 ‒ 2z + x).

g) (x + y)3 – x(x + y)2

= (x + y)2.(x + y) – x(x + y)2

= (x + y)2 (x + y ‒ x)

= y(x + y)2.

Bài 2 trang 16 SBT Toán 8 Tập 1: Phân tích các đa thức sau thành nhân tử:

a) 100 – x2;

b) 4x2 – y2;

c) x+y2-14y2;

d) (x – y)2 –(y – z)2;

e) x2 – (1 + 2x)2;

g) x4 – 16.

Lời giải:

a) 100 – x2 = 102– x2 = (10 ‒ x)(10 + x).

b) 4x2 – y2 = (2x)2‒ y2 = (2x ‒ y)(2x + y).

c) x+y2-14y2

=x+y2-12y2

=x+y-12yx+y+12y

=x+12yx+32y.

d) (x – y)2 –(y – z)2

= (x ‒ y + y ‒ z)(x ‒ y ‒ y + z)

= (x ‒ z)(x ‒ 2y + z).

e) x2 – (1 + 2x)2

= (x + 1 + 2x)(x ‒ 1 ‒ 2x)

= (3x + 1)(‒x ‒ 1).

g) x4 – 16 = (x2)2‒ 42

= (x2 ‒ 4)(x2 + 4)

= (x2 ‒ 22)(x2 + 4)

= (x + 2)(x ‒ 2)(x2 + 4).

Bài 3 trang 16 SBT Toán 8 Tập 1: Phân tích các đa thức sau thành nhân tử:

a) a2 + 12a + 36;

b) –9 + 6a – a2;

c) 2a2 + 8b2 – 8ab;

d) 16a2 + 8ab2 + b4.

Lời giải:

a) a2 + 12a + 36

= a2 + 2.a.6 + 62

= (a + 6)2.

b) –9 + 6a – a2

= ‒(a2 ‒ 6a + 9)

= ‒(a2 ‒ 2.3.a + 32)

= ‒(a ‒ 3)2.

c) 2a2 + 8b2 – 8ab

= 2(a2 + 4b2 ‒ 4ab)

= 2[a2 ‒ 2.a.2b + (2b)2]

= 2(a ‒ 2b)2.

d) 16a2 + 8ab2 + b4

= (4a)2 + 2.4a.b2 + (b2)2

= (4a + b2)2.

Bài 4 trang 17 SBT Toán 8 Tập 1: Phân tích các đa thức sau thành nhân tử:

a) x3 – 1 000;

b) 8x3 + (x – y)3;

c) (x – 1)3 – 27;

d) x6 + y9.

Lời giải:

a) x3 – 1 000

= x3‒ 103

= (x ‒ 10)(x2 + 10x + 102)

= (x ‒ 10)(x2 + 10x + 100).

b) 8x3 + (x – y)3

= (2x)3 + (x – y)3

= (2x + x ‒ y)[(2x)2 ‒ 2x(x ‒ y) + (x ‒ y)2]

= (3x ‒ y)(4x2 ‒ 2x2 + 2xy + x2 ‒ 2xy + y2)

= (3x ‒ y)[(4x2 ‒ 2x2 + x2) + (2xy ‒ 2xy) + y2]

= (3x ‒ y)(3x2 + y2).

c) (x – 1)3 – 27

= (x – 1)3  33

= (x ‒ 1 ‒ 3)[(x ‒ 1)2 + (x ‒ 1).3 + 32]

= (x ‒ 4)(x2 ‒ 2x + 1 + 3x ‒ 3 + 9)

= (x ‒ 4)[x2 + (‒2x + 3x) + 1 ‒ 3 + 9]

= (x ‒ 4)(x2 + x +7).

d) x6 + y9

= (x2)3 + (y3)3

= (x2 + y3)[(x2)2 ‒ x2.y3 + (y3)2]

= (x2 + y3)(x4 ‒ x2y3 + y6).

Bài 5 trang 17 SBT Toán 8 Tập 1: Phân tích các đa thức sau thành nhân tử:

a) x + 2x(x – y) – y;

b) x2 + xy – 3x – 3y;

c) xy – 5y + 4x – 20;

d) 5xy – 25x2 + 50x – 10y.

Lời giải:

a) x + 2x(x – y) – y

= (x ‒ y) + 2x(x ‒y)

= (x ‒ y)(1 + 2x).

b) Cách 1:

x2 + xy – 3x – 3y

= (x2 + xy) – (3x + 3y)

= x(x + y) – 3(x + y)

= (x + y)(x – 3).

Cách 2:

x2 + xy – 3x – 3y

= (x2 ‒ 3x) + (xy ‒ 3y)

= x(x ‒ 3) + y(x ‒ 3)

= (x ‒ 3)(x + y).

c) Cách 1:

xy – 5y + 4x – 20

= (xy – 5y) + (4x – 20)

= y(x – 5) + 4(x – 5)

= (x – 5)(y + 4).

Cách 2:

xy – 5y + 4x – 20

= (xy + 4x) ‒ (5y + 20)

= x(y + 4) ‒ 5(y + 4)

= (y + 4)(x ‒ 5).

d) Cách 1:

5xy – 25x2 + 50x – 10y

= (5xy – 25x2) + (50x – 10y)

= 5x(y ‒ 5x) + 10(5x ‒ y)

= 5x(y ‒ 5x) ‒ 10(y ‒ 5x)

= 5(y ‒ 5x)(x ‒ 2).

Cách 2:

5xy – 25x2 + 50x – 10y

= (5xy – 10y) – (25x2 – 50x)

= 5y(x – 2) – 25x(x – 2)

= 5(x – 2)(y – 5x).

Bài 6 trang 17 SBT Toán 8 Tập 1: Tính giá trị của biểu thức:

a) P = 7(a − 4) – b(4 – a) tại a = 17 và b = 3;

b) Q = a2 + 2ab – 5a – 10b tại a = 1,2 và b = 4,4.

Lời giải:

a) P = 7(a − 4) – b(4 – a) = 7(a − 4) + b(a ‒ 4) = (a ‒ 4)(7 + b).

Với a = 17 và b = 3 ta có:

P = (17 ‒ 4)(7 + 3) = 13.10 = 130.

b) Q = a2 + 2ab – 5a – 10b = (a2 + 2ab)  (5a + 10b)

= a(a + 2b) ‒ 5(a + 2b)= (a + 2b)(a ‒ 5).

Với a = 1,2 và b = 4,4 ta có:

Q = (1,2 + 2.4,4).(1,2 ‒ 5) = (1,2 + 8,8).(‒3,8) = 10. (‒3,8) = 38.

Chú ý: Đối với biểu thức Q, ngoài cách nhóm hạng tử như trên, ta còn có cách nhóm hạng tử khác để phân tích đa thức thành nhân tử.

Bài 7 trang 17 SBT Toán 8 Tập 1: Phân tích các đa thức sau thành nhân tử:

a) 4a2 – 4b2 – a – b;

b) 9a2 – 4b2 + 4b – 1;

c) 4x3 – y3 + 4x2y – xy2;

d) a3 – b3 + 4ab + 4a2 + 4b2.

Lời giải:

a) 4a2 – 4b2 – a – b

= (4a2 – 4b2)  (a + b)

= 4(a2 ‒ b2) (a + b)

= 4(a ‒ b)(a + b) (a + b)

= (a + b)(4a ‒ 4b ‒ 1).

b) 9a2 – 4b2 + 4b – 1

9a2  (4b2  4b + 1)

= (3a)2 ‒ [(2b)2 ‒ 2.2b + 12]

= (3a)2 ‒ (2b ‒ 1)2

= (3a + 2b ‒ 1)(3a ‒ 2b + 1)

c) 4x3 – y3 + 4x2y – xy2

= (4x3+ 4x2y– (y3+ xy2)

= 4x2(x + y) ‒ y2(y + x)

= (x + y)(4x2 ‒ y2)

= (x + y)[(2x)2 ‒ y2]

= (x + y)(2x + y)(2x ‒ y).

d) a3 – b3 + 4ab + 4a2 + 4b2

= (a3 – b3)+ (4a2 + 4ab + 4b2)

= (a ‒ b)(a2 + ab + b2) + 4.(a2 + ab + b2)

= (a2 + ab + b2)(a – b + 4).

Bài 8 trang 17 SBT Toán 8 Tập 1: Phân tích các đa thức sau thành nhân tử:

a) 4x3 – 36x;

b) 4xy2 – 4x2y – y3;

c) x6 – 64.

Lời giải:

a) 4x3 – 36x

= 4x(x2‒ 9)

= 4x(x2 ‒ 32)

= 4(x ‒ 3)(x + 3).

b) 4xy2 – 4x2y – y3

= y(4xy + 4x2 + y2)

= ‒y(4x2‒ 4xy + y2)

= ‒y[(2x)2 ‒ 2.2x.y + y2]

= ‒y(2x  y)2.

c) x6 – 64

= (x3)2 ‒ 82

= (x3 + 8)(x3 ‒ 8)

= (x3 + 23)(x3 ‒ 23)

= (x + 2)(x2 ‒ 2x + 4)(x ‒ 2)(x2 + 2x + 4 ).

Xem thêm lời giải Sách bài tập Toán 8 bộ sách Chân trời sáng tạo hay, chi tiết khác:

Bài 2: Các phép toán với đa thức nhiều biến

Bài 3: Hằng đẳng thức đáng nhớ

Bài 5: Phân thức đại số

Bài 6: Cộng, trừ phân thức

Bài 7: Nhân, chia phân thức

 

Xem tất cả hỏi đáp với chuyên mục: Phân tích đa thức thành nhân tử sbt1
Bình luận (0)

Đăng nhập để có thể bình luận

Chưa có bình luận nào. Bạn hãy là người đầu tiên cho tôi biết ý kiến!