Giải SBT Toán 8 Bài 4: Hình bình hành – Hình thoi
Lời giải:
Do ABCD là hình bình hành nên AB // CD, suy ra (hai góc so le trong);
OB = OD (tính chất đường chéo của hình bình hành);
Xét ∆DON và ∆BOM ta có:
;
OD = OB;
(hai góc đối đỉnh).
Suy ra ∆DON = ∆BOM (g.c.g).
Do đó OM = ON (hai cạnh tương ứng)
Vậy O là trung điểm của MN.
a) Chứng minh rằng tứ giác AHCK là hình bình hành.
b) Gọi M là giao điểm của AK và BC, N là giao điểm của CH và AD. Chứng minh AN = CM.
c) Gọi O là trung điểm của HK. Chứng minh M, O, N thẳng hàng.
Lời giải:
a) Do ABCD là hình bình hành nên AB // CD
Suy ra (hai góc so le trong) hay .
Xét ∆AHB vuông tại H và ∆CKD vuông tại K, ta có:
AB = CD (do ABCD là hình bình hành); (chứng minh trên).
Suy ra ∆AHB = ∆CKD (cạnh huyền – góc nhọn)
Do đó AH = CK (hai cạnh tương ứng)
Ta có: AH ⊥ BD, CK ⊥ BD suy ra AH // CK.
Tứ giác AHCK có: AH // CK, AH = CK nên là hình bình hành.
b) Vì AHCK là hình bình hành nên AK // CH, hay AM // CN. (1)
Hơn nữa, ABCD là hình bình hành và N ∈AD, M ∈ BC nên AN // CM. (2)
Từ (1) và (2) suy ra ANCM là hình bình hành.
Vậy AN = CM.
c) Tứ giác AHCK là hình bình hành có hai đường chéo AC, HK cắt nhau tại trung điểm
O của HK nên O cũng là trung điểm của AC.
Tứ giác ANCM là hình bình hành có hai đường chéo AC, NM cắt nhau tại trung điểm
O của AC nên O cũng là trung điểm của MN.
Vậy M, O, N thẳng hàng.
Lời giải:
Do ABCD là hình bình hành nên AB // CD, suy ra (các cặp góc so le trong).
Xét ∆AOM và ∆CON ta có:
(chứng minh trên);
AM=CN (giả thiết);
(chứng minh trên)
Do đó ∆AOM = ∆CON (g.c.g).
Suy ra OA = OC (hai cạnh tương ứng)
Xét hình bình hành ABCD có O là trung điểm của đường chéo AC nên O cũng là trung điểm của đường chéo BD.
Do đó ba điểm B, O, D thẳng hàng.
a) Chứng minh ∆AMB = ∆CND.
b) Chứng minh rằng tứ giác AMCN là hình bình hành.
c) Gọi O là giao điểm của AC và BD, I là giao điểm của AM và BC. Chứng minh rằng AM = 2MI.
d) Gọi K là giao điểm của CN và AD. Chứng minh I và K đối xứng với nhau qua O.
Lời giải:
a) Vì ABCD là hình bình hành nên AB = CD và AB // CD.
Suy ra (hai góc so le trong).
Xét ∆AMB và ∆CND, ta có:
AB = CD (chứng minh trên);
(chứng minh trên);
BM = DN (giả thiết).
Suy ra ∆AMB = ∆CND (c.g.c).
b) Ta có ∆AMB = ∆CND (theo câu a), suy ra AM = CN (1)
Ta có: BM + MN = BN và DN + MN = DM; mà BM = DN, suy ra BN = DM.
Xét ∆ABN và ∆CDM, ta có:
AB = CD (chứng minh trên);
;
BN = DM (chứng minh trên)
Suy ra ∆ABN = ∆CDM (c.g.c), suy ra AN = CM (2)
Từ (1) và (2) suy ra tứ giác AMCN là hình bình hành.
c) Vì AMCN là hình bình hành nên OA = OC.
∆ABC có OA = OC, suy ra BO là đường trung tuyến của∆ABC.
ABCD là hình bình hành nên khi O là trung điểm của đường chéo AC thì O cũng là trung điểm của đường chéo BD, khi đó .
Ta lại có: , suy ra .
Do đó M là trọng tâm ∆ABC.
Khi đó . Suy ra AM = 2MI.
d) Vì AMCN là hình bình hành nên AM // CN, mà M ∈ AI, N ∈ CK, nên AI // CK. (3)
Hơn nữa, AD // BC, K ∈ AD, I ∈ BC, nên AK // CI (4)
Từ (3), (4) suy ra AKCI là hình bình hành.
Mà O là trung điểm của AC, suy ra O cũng là trung điểm của KI hay I và K đối xứng nhau qua O.
a) Tứ giác MDCN là hình thoi;
b) Tam giác EMC là tam giác cân;
c) .
Lời giải:
a) Ta có: MF ⊥ CE, AB ⊥ CE, suy ra MN // AB // CD.
Xét tứ giác MDCN ta có: MD // CN (do AD // BC; M ∈AD, N ∈ BC) và MN // CD (chứng minh trên).
Do đó tứ giác MDCN là hình bình hành.
Mặt khác M là trung điểm của AD nên .
Lại có AD = 2AB mà AB = CD (do ABCD là hình bình hành) nên .
Do đó MD = CD.
Suy ra hình bình hành MDCN là hình thoi.
b) Xét tứ giác ADCE ta có AE // CD (theo câu a).
Do đó, tứ giác ADCE là hình thang với hai đáy AE và CD.
Xét hình thang ADCE có:
M là trung điểm AD (giả thiết);
AE // MF // CD (theo câu a).
Theo chứng minh ở Bài 5, trang 63, SBT Toán 8 Tập Một, ta có: F là trung điểm của CE.
Xét ∆EMC có MF là đường trung tuyến ứng với cạnh CE và MF ⊥ CE (giả thiết).
Do đó ∆EMC cân tại M.
c) Tứ giác MDCN là hình thoi nên (tính chất đường chéo của hình thoi).
Mà ∆EMC cân tại M nên .
Ta có . (1)
Lại có (hai góc so le trong). (2)
Từ (1) và (2) suy ra .
Lời giải:
Gọi O là giao điểm của AC và BD.
Vì ABCD là hình bình hành nên O là trung điểm của AC và BD.(1)
Xét hình bình hành AECF có O là trung điểm của AC nên O là trung điểm của EF (2)
Từ (1) và (2) suy ra ba đường thẳng EF, AC, BD đồng quy tại O.
Lời giải:
Xét ∆ABD ta có M, N lần lượt là trung điểm của AB, BD (giả thiết).
Theo bài 4, trang 63, SBT Toán 8 Tập Một, ta có MN // AD và .
Xét ∆ACD ta có P, Q lần lượt là trung điểm của DC, AC (giả thiết).
Theo bài 4, trang 63, SBT Toán 8 Tập Một, ta có PQ // AD và .
Xét tứ giác MNPQ ta có MN // PQ (vì cùng song song với AD) và .
Suy ra tứ giác MNPQ là hình bình hành
Lời giải:
Tứ giác ABCD là hình bình hành nên OA = OC và OB = OD.
Ta có: (N là trung điểm của OD); (M là trung điểm của OB); OB = OD (chứng minh trên).
Suy ra OM = ON.
Xét tứ giác AMCN ta có: OM = ON, OA = OC (chứng minh trên)
Do đó, tứ giác AMCN là hình bình hành.
Xem thêm lời giải Sách bài tập Toán 8 bộ sách Chân trời sáng tạo hay, chi tiết khác:
Bài 3: Hình thang – Hình thang cân
Bài 4: Hình bình hành – Hình thoi
Bài tập cuối chương 3 trang 72
Bài 1: Thu thập và phân loại dữ liệu