Giải SBT Toán 11 (Cánh diều) Bài 1: Đường thẳng và mặt phằng trong không gian

Với giải sách bài tập Toán 11 Bài 1: Đường thẳng và mặt phằng trong không gian sách Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 11 Bài 1. Mời các bạn đón xem:

Giải SBT Toán 11 Bài 1: Đường thẳng và mặt phằng trong không gian

A. (ABCD)                       

B. (SAC)                 

C. (SAB)             

D. (SAD)

Lời giải:

Sách bài tập Toán 11 Bài 1 (Cánh diều): Đường thẳng và mặt phằng trong không gian  (ảnh 1)

Theo hình vẽ, ta thấy SC nằm trong mặt (SAC).

Do MSC nên M nằm trên mặt phẳng (SAC).

Đáp án đúng là B.

Bài 2 trang 94 SBT Toán 11: Cho hình tứ diện ABCD. Giao tuyến của hai mặt phẳng (ABC) và (CDA) là đường thẳng:

A. AB                       

B. BD             

C. CD             

D. AC

Lời giải:

Sách bài tập Toán 11 Bài 1 (Cánh diều): Đường thẳng và mặt phằng trong không gian  (ảnh 1)

Xét hai mặt phẳng (ABC) và (CDA), ta nhận thấy hai mặt phẳng này có hai điểm chung là A và C, do đó giao tuyến của hai mặt phẳng này là AC.

Đáp án đúng là D.

Bài 3 trang 94 SBT Toán 11: Một đồ vật trang trí có bốn mặt phân biệt là các tam giác (xem hình dưới đây). Vẽ hình hiểu diễn của đồ vật đó.

Lời giải:

Do đồ vật trang trí có 4 mặt là các tam giác, nên nó có hình dạng một tứ diện.

Hình biểu diễn của nó như sau:

Sách bài tập Toán 11 Bài 1 (Cánh diều): Đường thẳng và mặt phằng trong không gian (ảnh 1)

Bài 4 trang 94 SBT Toán 11: Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của AB, CD. Chứng minh rằng bốn điểm M, N, C, D không cùng nằm trong một mặt phẳng.

Lời giải:

Sách bài tập Toán 11 Bài 1 (Cánh diều): Đường thẳng và mặt phằng trong không gian (ảnh 1)

Do N là trung điểm của BC, nên 4 điểm BNCD cùng nằm trong mặt phẳng.

Giả sử 4 điểm MNCD cùng nằm trong một mặt phẳng.

Điều này có nghĩa là M(NCD).

Do bốn điểm BNCD cùng nằm trong mặt phẳng, ta suy ra M(BCD).

Điểm M và điểm B cùng nằm trong mặt phẳng (BCD), nên BM(BCD).

Mặt khác, do M là trung điểm của AB, nên ABM.

Suy ra A(BCD). Điều này là vô lí do ABCD là tứ diện nên bốn điểm ABCD không cùng nằm trong một mặt phẳng.

Bài 5 trang 95 SBT Toán 11: Cho hai mặt phẳng (P), (Q) cắt nhau theo giao tuyến d và hai đường thẳng a, b lần lượt nằm trong (P), (Q). Chứng minh rằng nếu hai đường thẳng a, b cắt nhau thì giao điểm của chúng thuộc đường thẳng d.

Lời giải:

Sách bài tập Toán 11 Bài 1 (Cánh diều): Đường thẳng và mặt phằng trong không gian (ảnh 1)

Gọi I là giao điểm của hai đường thẳng a và b. Suy ra {IaIb

Vì a(P) và b(Q), ta suy ra {I(P)I(Q), tức là I thuộc giao tuyến của hai mặt phẳng (P) và (Q). Mà (P)(Q)=d, suy ra Id.

Bài toán được chứng minh.

Bài 6 trang 95 SBT Toán 11: Cho tứ diện ABCD. Trên các cạnh AC,CD lần lượt lấy các điểm E,F sao cho CE=3EA,DF=2FC.

a)    Xác định giao tuyến của mặt phẳng (BEF) với các mặt phẳng (ABC)(ACD)(BCD).

b)    Xác định giao điểm K của đường thẳng AD với mặt phẳng (BEF).

c)     Xác định giao tuyến của hai mặt phẳng (BEF) và (ABD).

Lời giải: 

a)

Giao tuyến của (BEF) và (ABC):

Ta có B(BEF)(ABC).

Mặt khác, ta có {E(BEF)EAC(ABC)E(BEF)(ABC).

Như vậy giao tuyển của (BEF) và (ABC) là đường thẳng BE.

 Sách bài tập Toán 11 Bài 1 (Cánh diều): Đường thẳng và mặt phằng trong không gian (ảnh 1)

Giao tuyến của (BEF) và (ACD):

Ta có {F(BEF)FCD(ACD)F(BEF)(ACD).

Mặt khác, {E(BEF)EAC(ACD)E(BEF)(ACD).

Như vậy giao tuyển của (BEF) và (ACD) là đường thẳng EF.

Giao tuyến của (BEF) và (BCD):

Ta có B(BEF)(BCD)

Mặt khác, {F(BEF)FCD(BCD)F(BEF)(BCD)

Như vậy giao tuyển của (BEF) và (BCD) là đường thẳng BF.

b) Trên mặt phẳng (ACD), lấy K là giao điểm của AD và EF.

Ta có {K}=ADEF,  mà EF(BEF).

Suy ra {K}=AD(BEF), tức K là giao điểm của AD và (BEF).

c) Ta có B(BEF)(ABD).

Theo câu b, ta có KAD(BEF){KADK(BEF)

Mà AD(ABD) nên ta suy ra {K(ABD)K(BEF)K(ABD)(BEF).

Vậy giao tuyến của hai mặt phẳng (BEF) và (ABD) là đường thẳng BK.

Bài 7 trang 95 SBT Toán 11: Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi M,N,P lần lượt là trung điểm của các cạnh SA,BC,CD.

a) Xác định giao điểm của đường thẳng NP với mặt phẳng (SAB).

b) Xác định giao tuyến của mặt phẳng (MNP) với các mặt phẳng (SAB),(SAD),(SBC),(SCD).

Lời giải:

Sách bài tập Toán 11 Bài 1 (Cánh diều): Đường thẳng và mặt phằng trong không gian (ảnh 1)

a) Xét mặt phẳng (ABCD), gọi E là giao điểm của AB và NP.

Ta có {E}=ABNP, mà NP(MNP) nên {E}=(SAB)NP.

b)

Giao tuyến của (MNP) và (SAB):

Ta có {MSA(SAB)M(MNP)M(SAB)(MNP).

Mặt khác, theo câu a, ta có {EAB(SAB)ENP(MNP)E(SAB)(MNP).

Từ đó, giao tuyến của hai mặt phẳng (SAB) và (MNP) là đường thẳng ME.

Giao tuyến của (MNP) và (SAD):

Trên mặt phẳng (ABCD), gọi F là giao điểm của AD và NP.

Vì F là giao điểm của AD và NP, ta suy ra {FADFNP.

Do AD(SAD)NP(MNP) nên ta có {F(SAD)F(MNP)F(SAD)(MNP).

Hơn nữa, ta cũng có {MSA(SAD)M(MNP)M(SAD)(MNP).

Vậy giao tuyến của hai mặt phẳng (SAD) và (MNP) là đường thẳng MF.

 

Giao tuyến của (MNP) và (SBC):

Ta có ME là giao tuyến của hai mặt phẳng (SAB) và (MNP)ME(SAB).

Trên mặt phẳng (SAB), gọi {K}=MESB.

Suy ra {KME(MNP)KSB(SBC)K(MNP)(SBC).

Hơn nữa, ta có {N(MNP)NBC(SBC)N(MNP)(SBC).

Vậy giao tuyến của hai mặt phẳng (SBC) và (MNP) là đường thẳng NK.

Giao tuyến của (MNP) và (SCD):

Ta có MF là giao tuyến của hai mặt phẳng (SAD) và (MNP)MF(SAD).

Trên mặt phẳng (SAD), gọi {L}=MFSD.

Suy ra {LMF(MNP)LSD(SCD)L(MNP)(SCD).

Hơn nữa, ta có {P(MNP)PCD(SCD)P(MNP)(SCD).

Vậy giao tuyến của hai mặt phẳng (SCD) và (MNP) là đường thẳng LP.

Bài 8 trang 95 SBT Toán 11: Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi M,N,P lần lượt là trung điểm của các cạnh SA,SB,SC.

a)    Xác định giao điểm I của đường thẳng MP với mặt phẳng (SBD).

b)    Xác định giao điểm Q của đường thẳng SD với mặt phẳng (MNP).

Lời giải:

a) Trên mặt phẳng (ABCD), gọi {O}=ACBD.

Trên mặt phẳng (SAC), gọi {I}=MPSO.

Do SO(SBD), ta suy ra {I}=MP(SBD).

Vậy I là giao điểm của MP và (SBD).

Sách bài tập Toán 11 Bài 1 (Cánh diều): Đường thẳng và mặt phằng trong không gian (ảnh 1) 

b) Trên mặt phẳng (SBD), gọi {Q}=NISD.

Do NI(MNP), ta suy ra {Q}=(MNP)SD.

Vậy Q là giao điểm của SD và (MNP).

a) Xác định các giao điểm M, N lần lượt của SA, SD với mặt phẳng (IBC).

b*) Chứng minh rằng các đường thẳng AD, BC và MN đồng quy.

Lời giải:

Sách bài tập Toán 11 Bài 1 (Cánh diều): Đường thẳng và mặt phằng trong không gian (ảnh 1)

a)

Giao điểm M của SA và (IBC):

Ta nhận xét rằng ISO(SAC)CI(SAC).

Trên mặt phẳng (SAC), gọi {M}=CISA.

Do IC(IBC), nên {M}=(IBC)SA.

Vậy M là giao điểm của (IBC) và SA.

Giao điểm N của SD và (IBC):

Ta nhận xét rằng ISO(SBD)BI(SBD).

Trên mặt phẳng (SBD), gọi {N}=BISD.

Do IB(IBC), nên {N}=(IBC)SD.

Vậy N là giao điểm của (IBC) và SD.

b) Trên mặt phẳng (ABCD), gọi K là giao điểm của AD và BC.

Ta có {MSA(SAD)M(IBC)M(SAD)(IBC).

Mặt khác, {NSD(SAD)N(IBC)N(SAD)(IBC).

Vậy giao tuyến của (SAD) và (IBC) là đường thẳng MN.

Do AD(SAD)BC(IBC){K}=ADBC, ta suy ra K nằm trên giao tuyến của (SAD) và (IBC), tức là KMN.

Vậy ba đường thẳng ADBCMN cắt nhau tại K.

Xem thêm các bài giải SBT Toán lớp 11 Cánh diều hay, chi tiết khác:

Bài 3: Hàm số liên tục

Bài tập cuối chương 3

Bài 2: Hai đường thẳng song song trong không gian

Bài 3: Đường thẳng và mặt phẳng song song

Bài 4: Hai mặt phẳng song song

Câu hỏi liên quan

Đáp án đúng là D.
Xem thêm
Đáp án đúng là B.
Xem thêm
Xem tất cả hỏi đáp với chuyên mục: Đường thẳng và mặt phằng trong không gian SBT
Bình luận (0)

Đăng nhập để có thể bình luận

Chưa có bình luận nào. Bạn hãy là người đầu tiên cho tôi biết ý kiến!