Với mỗi số nguyên dương n, lấy n + 6 điểm cách đều nhau trên đường tròn. Nối mỗi điểm

Bài 14 trang 46 SBT Toán 11 Tập 1Với mỗi số nguyên dương n, lấy n + 6 điểm cách đều nhau trên đường tròn. Nối mỗi điểm với điểm cách nó hai điểm trên đường tròn đó để tạo thành các ngôi sao như Hình 1. Gọi un là số đo góc ở đỉnh tính theo đơn vị độ của mỗi ngôi sao thì ta được dãy số (un). Tìm công thức của số hạng tổng quát un.

 Với mỗi số nguyên dương n, lấy n + 6 điểm cách đều nhau trên đường tròn

Trả lời

Ta thấy đường tròn được chia thành n + 6 cung bằng nhau và mỗi cung có số đo bằng 360n+6° . Do mỗi điểm được nối với điểm cách nó hai điểm trên đường tròn nên góc ở đỉnh của mỗi ngôi sao là góc nội tiếp chắn n + 6 – 2 . 3 = n cung bằng nhau đó. Suy ra số đo góc ở đỉnh tính theo đơn vị độ của mỗi ngôi sao là un=12.360n+6.n=180nn+6 .

Xem thêm lời giải bài tập SBT Toán 11 Cánh diều hay, chi tiết khác:

Bài 4: Phương trình lượng giác cơ bản

Bài tập cuối chương 1

Bài 1: Dãy số

Bài 2: Cấp số cộng

Bài 3: Cấp số nhân

Bài tập cuối chương 2

Câu hỏi cùng chủ đề

Xem tất cả