Tứ giác ABCD trong Hình 3.10 có AB = AD, CB = CD, được gọi là hình “cái diều”
156
07/11/2023
Bài 3.3 trang 51 Toán 8 Tập 1: Tứ giác ABCD trong Hình 3.10 có AB = AD, CB = CD, được gọi là hình “cái diều”.
a) Chứng minh rằng AC là đường trung trực của đoạn thẳng BD.
b) Tính các góc B, D biết rằng .
Trả lời
a) Nối AC, BD (như hình vẽ).
Ta có AB = AD hay hai điểm A cách đều hai đầu mút B và D;
CB = CD hay hai điểm C cách đều hai đầu mút B và D;
Do đó, hai điểm A và C cách đều hai đầu mút B và D.
Vậy AC là đường trung trực của đoạn thẳng BD.
b) Gọi I là giao điểm của AC và BD.
Vì AC là đường trung trực của đoạn thẳng BD nên AC ⊥ BD.
• Xét tam giác ABD cân tại A (vì AB = AD) có AI là đường cao (vì AI ⊥ BD)
Nên AI cũng là tia phân giác của hay .
Suy ra .
• Xét tam giác BCD cân tại C (vì BC = CD) có CI là đường cao (vì AC ⊥ BD)
Nên CI cũng là tia phân giác của hay .
Suy ra null .
• Xét tam giác ACD có: (định lí tổng ba góc trong một tam giác).
Hay .
Suy ra .
Xét tứ giác ABCD có: (định lí tổng ba góc trong một tam giác).
Hay .
Suy ra .
Do đó .
Vậy ; .
Xem thêm các bài giải SGK Toán 8 Kết nối tri thức hay, chi tiết khác:
Luyện tập chung trang 45
Bài tập cuối chương 2