Giải SGK Toán 8 Luyện tập chung trang 56 Tập 1
Bài tập
Bài 3.9 trang 56 Toán 8 Tập 1: Tứ giác ABCD trong Hình 3.25 có phải là hình thang không? Vì sao?
Lời giải:
Vẽ tia Dx đi qua điểm A.
Vì và là hai góc kề bù nên .
Suy ra .
Ta có mà hai góc này ở vị trí đồng vị nên AB // CD.
Vậy tứ giác ABCD là hình thang.
Lời giải:
Xét tam giác ABD cân tại A (vì AB = AD), ta có:
• ;
• hay
Suy ra .
Vì AB // CD nên null (hai góc so le trong).
Do đó .
Vì tứ giác ABCD là hình thang cân nên ; .
Vậy số đo các góc của hình thang cân ABCD là ; ; ;
Bài 3.11 trang 56 Toán 8 Tập 1: Tính số đo các góc của tứ giác ABCD trong Hình 3.26.
Lời giải:
* Xét tam giác ABD cân tại A (vì AB = AD) ta có:
• .
• .
Suy ra .
Ta có suy ra .
* Xét tam giác BCD cân tại C (vì BC = CD) ta có:
• .
•
Suy ra .
Ta có: .
Vậy số đo các góc của tứ giác ABCD là ; ; .
a) Chứng minh tứ giác APMR là hình thang cân.
b) Chứng minh rằng chu vi tam giác PQR bằng tổng độ dài MA + MB + MC.
c) Hỏi với vị trí nào của M thì tam giác PQR là tam giác đều?
Lời giải:
a) Vì tam giác ABC đều nên .
Vì PM // BC nên (đồng vị).
Suy ra (cùng bằng 60°).
Tứ giác APMR là hình thang (vì MR // AP) có .
Do đó tứ giác APMR là hình thang cân.
b) Vì tứ giác APMR là hình thang cân nên AM = PR (1)
Chứng minh tương tự câu a, ta cũng có các tứ giác BPMQ và MQCR là hình thang cân.
Suy ra BM = PQ và MC = QR (2)
Từ (1)và (2) suy ra PR + PQ + QR = MA + MB + MC.
Mà PR + PQ + QR chính là chu vi của tam giác PQR.
Do đó chu vi tam giác PQR bằng tổng độ dài MA + MB + MC (đpcm).
c) Để tam giác PQR là tam giác đều thìPR = PQ = QRsuy ra MA = MB = MC
Khi đó điểm M cách đều ba đỉnh A, B, C của tam giác ABC.
Do đó M là giao điểm của ba đường trung trực (đồng thời M cũng là giao điểm của ba đường trung tuyến, ba đường cao, đường phân giác).
Vậy khi M là giao điểm của ba đường trung trực thì tam giác PQR là tam giác đều.
Video bài giảng Toán 8 Luyện tập chung trang 56 - Kết nối tri thức
Xem thêm lời giải bài tập SGK Toán lớp 8 Kết nối tri thức hay, chi tiết khác: