Giải SGK Toán 8 (Kết nối tri thức) Bài 12: Hình bình hành

1900.edu.vn xin giới thiệu giải bài tập Toán lớp 8 Bài 12: Hình bình hành sách Kết nối tri thức hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Toán 8 Bài 12. Mời các bạn đón xem:

Giải SGK Toán 8 Bài 12: Hình bình hành

Mở đầu trang 57 Toán 8 Tập 1: Hai con đường lớn a và b cắt nhau tạo thành một góc. Bên trong góc đó có một điểm dân cư O. Phải mở một con đường thẳng đi qua O cắt a tại A, cắt b tại B như thế nào để hai đoạn đường OA và OB bằng nhau (các con đường đều là đường thẳng) (H.3.27)?

Mở đầu trang 57 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

Lời giải:

Sau bài học này ta giải quyết được bài toán như sau:

Gọi điểm giao nhau giữa hai đường thẳng a và b là điểm C.

Mở đầu trang 57 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

– Vẽ tia Cx đi qua điểm O. Trên tia Cx lấy điểm D sao cho OC = OD (hay O là trung điểm của CD).

– Qua D vẽ tia Dy // a cắt tia b tại B; vẽ Dz // b cắt a tại A.

Mở đầu trang 57 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

Khi đó tứ giác ACBD có AC // BD; AD // BC nên là hình bình hành.

Suy ra hai đường chéo AB, CD cắt nhau tại trung điểm của mỗi đường.

Mà O là trung điểm CD nên O là trung điểm của AB, hay OA = OB.

Vậy con đường đi qua O sao cho OA = OB được mở như trên.

1. Hình bình hành và tính chất

HĐ1 trang 57 Toán 8 Tập 1: Trong Hình 3.28, có một hình bình hành. Đó là hình nào? Em có thể giải thích tại sao không?

HĐ1 trang 57 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

Lời giải:

Tứ giác trong Hình 3.28c là hình bình hành vì:

Ta so sánh độ dài các cạnh đối trong tứ giác bằng cách đếm số ô vuông trong hình.

Ta thấy AB = CD; AD = BC.

Thực hành 1 trang 58 Toán 8 Tập 1: Vẽ hình bình hành, biết hai cạnh liên tiếp bằng 3 cm, 4 cm và góc xen giữa hai cạnh đó bằng 60°. Hãy mô tả cách vẽ và giải thích tại sao hình vẽ được là hình bình hành.

Lời giải:

Giả sử hình bình hành ABCD có AD = 3cm, AB = 4 cm và BAD^=60° .

Cách vẽ:

– Vẽ cạnh AB = 4 cm.

– Vẽ BAx^=60° . Trên tia Ax lấy điểm D sao cho AD = 3cm.

– Kẻ By // AD, Dz // AB. Hai tia By và Dz cắt nhau tại C, ta được hình bình hành ABCD.

Hình vẽ được là hình bình hành vì có hai cặp cạnh đối song song (AB // CD, AD // BC).

Thực hành 1 trang 58 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

HĐ2 trang 58 Toán 8 Tập 1: Hãy nêu các tính chất của hình bình hành mà em đã biết.

Lời giải:

Các tính chất của hình bình hành mà em đã được học ở lớp 6:

– Các cạnh đối song song;

– Các cạnh đối bằng nhau;

– Các góc đối bằng nhau;

– Hai đường chéo cắt nhau tại trung điểm của mỗi đường.

HĐ3 trang 58 Toán 8 Tập 1: Cho hình bình hành ABCD (H.3.30).

HĐ3 trang 58 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

a) Chứng minh ∆ABC = ∆CDA.

Từ đó suy ra AB = CD, AD = BC và ABC^=CDA^ .

b) Chứng minh ∆ABD = ∆CDB. Từ đó suy ra DAB^=BCD^ .

c) Gọi giao điểm của hai đường chéo AC, BD là O. Chứng minh ∆AOB = ∆COD. Từ đó suy ra OA = OC, OB = OD.

Lời giải:

Vì ABCD là hình bình hành nên AB // CD; AD // BC.

Suy ra BAC^=ACD^;BCA^=DAC^ (các cặp góc so le trong).

Xét ∆ABC và ∆CDA có:

BAC^=ACD^ (chứng minh trên);

Cạnh AC chung.

BCA^=DAC^ (chứng minh trên);

Do đó ∆ABC = ∆CDA (g.c.g).

Suy ra AB = CD, AD = BC (các cặp cạnh tương ứng); ABC^=CDA^ (hai góc tương ứng).

b) Xét ∆ABD và ∆CDB có:

AB = CD (chứng minh trên);

AD = BC (chứng minh trên);

Cạnh BD chung.

Do đó ∆ABD = ∆CDB (c.c.c).

Suy ra DAB^=BCD^ (hai góc tương ứng).

c) Xét ∆AOB và ∆COD có:

BAO^=DCO^ (do BAC^=CDA^);

AB = CD (chứng minh trên);

ABO^=CDO^ (do AB // CD)

Do đó ∆AOB = ∆COD (g.c.g).

Suy ra OA = OC, OB = OD (các cặp cạnh tương ứng).

Luyện tập 1 trang 58 Toán 8 Tập 1: Cho tam giác ABC. Từ một điểm M tùy ý trên cạnh BC, kẻ đường thẳng song song với AB, cắt cạnh AC tại N và kẻ đường thẳng song song với AC, cắt AB tại P. Gọi I là trung điểm của đoạn NP. Chứng minh rằng I cũng là trung điểm của đoạn thẳng AM.

Lời giải:

Luyện tập 1 trang 58 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

Xét tứ giác APMN có:

• MN // AP (vì MN // AB)

• MP // AN (vì MP // AC)

Do đó tứ giác APMN là hình bình hành.

Suy ra hai đường chéo AM, NP cắt nhau tại trung điểm của mỗi đường.

Mà I là trung điểm của đoạn NP, nên I là trung điểm của đoạn thẳng AM.

Tranh luận trang 59 Toán 8 Tập 1: Tròn khẳng định: Hình thang cân có hai cạnh bên bằng nhau. Ngược lại, hình thang có hai cạnh bên bằng nhau thì nó là hình thang cân.

Vuông lại cho rằng: Tròn sai rồi!

Có trường hợp hình thang có hai cạnh bên bằng nhau nhưng nó không phải là hình thang cân.

Theo em, bạn nào đúng? Vì sao?

Lời giải:

Khẳng định của bạn Vuông là đúng.

Trường hợp 1: Hình thang có hai cạnh bên bằng nhau nhưng không song song với nhau thì hình thang đó là hình thang cân.

Hình minh họa:

Tranh luận trang 59 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

Trường hợp 2: Hình thang có hai cạnh bên bằng nhau và song song với nhau thì hình thang đó là hình bình hành.

Hình minh họa:

Tranh luận trang 59 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

2. Dấu hiệu nhận biết

Câu hỏi trang 59 Toán 8 Tập 1: Hãy viết giả thiết, kết luận của Định lí 2.

Lời giải:

Câu hỏi trang 59 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

Giả thiết, kết luận của Định lí 2:

Câu hỏi trang 59 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

Luyện tập 2 trang 60 Toán 8 Tập 1: Cho hình bình hành ABCD (AB > BC). Tia phân giác của góc D cắt AB tại E và tia phân giác của góc B cắt CD tại F (H.3.32).

Luyện tập 2 trang 60 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

a) Chứng minh hai tam giác ADE và CBF là những tam giác cân, bằng nhau.

b) Tứ giác DEBF là hình gì? Tại sao?

Lời giải:

Luyện tập 2 trang 60 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

Do AB > BC nên E nằm giữa A và B; F nằm giữa D và C.

a) Vì ABCD là hình bình hành nên AB // CD hay BE // DF.

Vì DE là tia phân giác của ADC^ nên D^1=D^2 .

Mà D^1=E^1 (BE // DF, hai góc so le trong) nên D^2=E^1 .

Suy ra tam giác ADE cân tại A.

Tương tự ta cũng chứng minh được: tam giác BCF cân tại C.

Vì ABCD là hình bình hành nên AD = BC; A^=C^;ADC^=ABC^ .

Vì AE là tia phân giác ADC^ ; BF là tia phân giác ABC^ nên

B^1=B^2=12ABC^;D^1=D^2=12ADC^ mà ADC^=ABC^ .

Do đó B^1=B^2=D^1=D^2 .

Xét ∆ADE và ∆CBF có:

A^=C^ (chứng minh trên);

AD = BC (chứng minh trên);

D^2=B^2 (chứng minh trên).

Do đó ∆ADE = ∆CBF (g.c.g).

b) Vì B^1=B^2=D^1=D^2 mà B^2=F^1 (vì tam giác BCF cân tại C)

Suy ra D^1=F^1 (hai góc đồng vị).

Do đó DE // BF.

Tứ giác BEDF có:

BE // DF (chứng minh trên);

DE // BF (chứng minh trên).

Do đó, tứ giác BEDF là hình bình hành.

Thực hành 2 trang 60 Toán 8 Tập 1: Chia một sợi dây xích thành bốn đoạn: hai đoạn dài bằng nhau, hai đoạn ngắn bằng nhau và đoạn dài, đoạn ngắn xen kẽ nhau. Hỏi khi móc hai đầu mút của sợi dây xích đó lại để được một tứ giác ABCD (có các đỉnh tại các điểm chia) như Hình 3.33 thì tứ giác ABCD là hình gì? Tại sao?

Thực hành 2 trang 60 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

Lời giải:

Đoạn dây xích được chia thành:

• Hai đoạn dài có độ dài bằng nhau, tức là AB = CD;

• Hai đoạn ngắn có độ dài bằng nhau, tức là AD = BC.

Tứ giác ABCD có AB = CD; AD = BC nên tứ giác ABCD là hình bình hành.

Câu hỏi trang 60 Toán 8 Tập 1: Hãy biết giả thiết, kết luận của Định lí 3.

Lời giải:

Câu hỏi trang 60 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

Giả thiết, kết luận của Định lí 3:

Câu hỏi trang 60 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

Luyện tập 3 trang 61 Toán 8 Tập 1: Cho hai điểm A, B phân biệt và điểm O không nằm trên đường thẳng AB. Gọi A’, B’ là các điểm sao cho O là trung điểm của AA’, BB’. Chứng minh rằng A’B’ = AB và đường thẳng A’B’ song song với đường thẳng AB.

Lời giải:

Luyện tập 3 trang 61 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

Ta có hai điểm A, B phân biệt và điểm O không nằm trên đường thẳng AB.

Mà O là trung điểm của AA’, BB’ nên O là trung điểm của hai đường chéo của tứ giác ABA’B’.

Do đó tứ giác ABA’B’ là hình bình hành.

Suy ra A’B’ = AB (định lí 1a) và A’B’ // AB (định nghĩa hình bình hành).

Vận dụng trang 61 Toán 8 Tập 1: Trở lại bài toán mở đầu. Em hãy vẽ hình và nêu cách vẽ con đường cần mở.

Lời giải:

Gọi điểm giao nhau giữa hai đường thẳng a và b là điểm C.

Vận dụng trang 61 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

– Vẽ tia Cx đi qua điểm O. Trên tia Cx lấy điểm D sao cho OC = OD (hay O là trung điểm của CD).

– Qua D vẽ tia Dy // a cắt tia b tại B; vẽ Dz // b cắt a tại A.

Vận dụng trang 61 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

Khi đó tứ giác ACBD có AC // BD; AD // BC nên là hình bình hành.

Suy ra hai đường chéo AB, CD cắt nhau tại trung điểm của mỗi đường.

Mà O là trung điểm CD nên O là trung điểm của AB, hay OA = OB.

Vậy con đường đi qua O sao cho OA = OB được mở như trên.

Bài tập

Bài 3.13 trang 61 Toán 8 Tập 1: Trong các khẳng định sau, khẳng định nào đúng, khẳng định nào sai? Vì sao?

a) Hình thang có hai cạnh bên song song là hình bình hành.

b) Hình thang có hai cạnh bên bằng nhau là hình bình hành.

c) Tứ giác có hai cạnh đối nào cũng song song là hình bình hành.

Lời giải:

a) Hình thang là tứ giác có một cặp cạnh song song.

Suy ra hình thang có hai cạnh bên song song thì hình này có hai cặp cạnh đối song song.

Do đó hình thang có hai cạnh bên song song là hình bình hành.

Vậy khẳng định a) đúng.

b) Hình thang có hai cạnh bên bằng nhau nhưng không song song nên không phải là hình bình hành.

Vậy khẳng định b) sai.

c) Tứ giác có hai cạnh đối nào cũng song song hay có hai cặp cạnh đối song song nên

tứ giác đó là hình bình hành.

Vậy khẳng định c) đúng.

Bài 3.14 trang 61 Toán 8 Tập 1: Tính các góc còn lại của hình bình hành ABCD trong Hình 3.35.

Bài 3.14 trang 61 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

Lời giải:

Vì ABCD là hình bình hành nên C^=A^=100°;B^=D^ .

Ta có: A^+B^+C^+D^=360° (định lí tổng các góc của một tứ giác)

100°+B^+100°+B^=360°

2B^+200°=360°

Suy ra 2B^=360°200°=160° .

Do đó B^=80° suy ra B^=D^=80° .

Vậy các góc còn lại của hình bình hành ABCD là A^=100°;C^=100° ; B^=80°;D^=80° .

Bài 3.15 trang 61 Toán 8 Tập 1: Cho hình bình hành ABCD. Gọi E, F lần lượt là trung điểm của AB, CD. Chứng minh BF = DE.

Lời giải:

Bài 3.15 trang 61 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

Vì ABCD là hình bình hành nên AB = CD, AB // CD.

Mà E, F lần lượt là trung điểm của AB, CD nên AE = BE = 12AB, CF = DF = 12CD.

Do đó AE = BE = CF = DF.

Xét tứ giác BEDF có:

BE = DF (chứng minh trên);

BE // DF (vì AB // CD)

Do đó tứ giác BEDF là hình bình hành.

Suy ra BF = DE (đpcm).

Bài 3.16 trang 61 Toán 8 Tập 1: Trong mỗi trường hợp sau đây, tứ giác nào là hình bình hành, tứ giác nào không là hình bình hành? Vì sao?

Bài 3.16 trang 61 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

Lời giải:

* Hình 3.36a)

Xét tứ giác ABCD có: null.

100°+80°+100°+D^=360°

280°+D^=360°

Suy ra D^=360°280°=80° .

Tứ giác ABCD có: A^=C^=100° ; B^=D^=80° .

Do đó, tứ giác ABCD là hình bình hành.

* Hình 3.36b)

Xét tứ giác ABCD có: A^+B^+C^+D^=360° .

75°+B^+75°+90°=360°

240°+B^=360°

Suy ra B^=360°240°=120° .

Tứ giác ABCD có: A^=C^=100° nhưng B^D^(80°90°) .

Do đó, tứ giác ABCD không là hình bình hành.

* Hình 3.36c)

Xét tứ giác ABCD có: A^+B^+C^+D^=360° .

70°+110°+C^+110°=360°

C^+290°=360°

Suy ra C^=360°290°=70° .

Tứ giác ABCD có: A^=C^=70° ; B^=D^=110° .

Do đó, tứ giác ABCD là hình bình hành.

Vậy tứ giác ABCD trong Hình 3.36a) và 3.36c) là hình bình hành; tứ giác ABCD trong Hình 3.36b) không là hình bình hành.

Bài 3.17 trang 61 Toán 8 Tập 1: Cho hình bình hành ABCD. Gọi E, F lần lượt là trung điểm của các cạnh AB, CD. Chứng minh rằng:

a) Hai tứ giác AEFD, AECF là những hình bình hành;

b) EF = AD, AF = EC.

Lời giải:

Bài 3.17 trang 61 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

a) Vì ABCD là hình bình hành nên AB = CD, AB // CD.

Mà E, F lần lượt là trung điểm của AB, CD nên AE = BE = 12AB, CF = DF = 12CD

Do đó AE = BE = CF = DF.

• Xét tứ giác AEFD có:

AE // DF (vì AB // CD);

AE = DF (chứng minh trên)

Do đó tứ giác AEFD là hình bình hành.

• Xét tứ giác AECF có:

AE // CF (vì AB // CD);

AE = CF (chứng minh trên)

Do đó tứ giác AECF là hình bình hành.

Vậy hai tứ giác AEFD, AECF là những hình bình hành.

b) Vì tứ giác AEFD là hình bình hành nên EF = AD.

Vì tứ giác AECF là hình bình hành nên AF = EC.

Vậy EF = AD, AF = EC.

Bài 3.18 trang 61 Toán 8 Tập 1: Gọi O là giao điểm của hai đường chéo của hình bình hành ABCD. Một đường thẳng đi qua O lần lượt cắt các cạnh AB, CD của hình bình hành tại hai điểm M, N. Chứng minh ∆OAM = ∆OCN. Từ đó suy ra tứ giác MBND là hình bình hành.

Lời giải:

Bài 3.18 trang 61 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

Vì ABCD là hình bình hành nên ta có:

• Hai đường chéo AC và BD cắt nhau tại O nên OA = OC, OB = OD.

• AB // CD nên AM // CN suy ra OAM^=OCN^ (hai góc so le trong).

Xét ∆OAM và ∆OCN có:

OAM^=OCN^ (chứng minh trên)

OA = OC (chứng minh trên)

AOM^=CON^ (hai góc đối đỉnh)

Do đó ∆OAM = ∆OCN (g.c.g).

Suy ra AM = CN (hai cạnh tương ứng)

Mặt khác, AB = CD (chứng minh trên); AB = AM + BM; CD = CN + DN.

Suy ra BM = DN.

Xét tứ giác MBND có:

• BM // DN (vì AB // CD)

• BM = DN (chứng minh trên)

Do đó, tứ giác MBND là hình bình hành.

Video bài giảng Toán 8 Bài 12: Hình bình hành - Kết nối tri thức

Xem thêm lời giải bài tập SGK Toán lớp 8 Kết nối tri thức hay, chi tiết khác:

Bài 11: Hình thang cân

Luyện tập chung

Luyện tập chung

Bài 13: Hình chữ nhật

Bài 14: Hình thoi và hình vuông

Xem tất cả hỏi đáp với chuyên mục: Hình bình hành SGK
Bình luận (0)

Đăng nhập để có thể bình luận

Chưa có bình luận nào. Bạn hãy là người đầu tiên cho tôi biết ý kiến!