Trong không gian với hệ tọa độ Oxyz, cho các điểm A (1; 2; 3), B (2; 1; 5), C (2; 4; 2). Góc giữa

Trong không gian với hệ tọa độ Oxyz, cho các điểm \(A\left( {1;2;3} \right),\,\,B\left( {2;1;5} \right),\,\,C\left( {2;4;2} \right)\). Góc giữa hai đường thẳng AB AC bằng

A. \({60^0}\)
B. \(f\left( x \right) = \frac{2}{{{x^2} - 1}}\)
C. \({30^0}\)

D. \({120^0}\)

Trả lời

Đáp án A

Phương pháp:

Đường thẳng d và d’ có các VTCP lần lượt là \(\overrightarrow u ,\,\overrightarrow v \Rightarrow \cos \left( {d;d'} \right) = \frac{{\left| {\overrightarrow u .\overrightarrow v } \right|}}{{\left| {\overrightarrow u } \right|.\left| {\overrightarrow v } \right|}}\)

Cách giải:

\(\overrightarrow {AB} = \left( {1; - 1;2} \right),\,\,\,\overrightarrow {AC} = \left( {1;2; - 1} \right)\)

\( \Rightarrow \cos \left( {AB;AC} \right) = \frac{{\left| {\overrightarrow {AB} .\overrightarrow {AC} } \right|}}{{\left| {\overrightarrow {AB} } \right|.\left|

{\overrightarrow {AC} } \right|}} = \frac{{\left| {1.1 + - 1.2 + 2. - 1} \right|}}{{\sqrt {{1^2} + {1^2} + {2^2}} .\sqrt {{1^2} + {2^2} + {1^2}} }} = \frac{3}{6} = \frac{1}{2} \Rightarrow \left( {AB;AC} \right) = {60^0}\)

Câu hỏi cùng chủ đề

Xem tất cả