Trong không gian Oxyz, cho ba vectơ a(1; 2; 1), vectơ b(0; 2; -1), vectơ c(m; 1; 0). Tìm giá trị

Trong không gian Oxyz, cho ba vectơ \(\overrightarrow a \left( {1;2;1} \right),\,\,\overrightarrow b \left( {0;2; - 1} \right),\,\,\overrightarrow c \left( {m;1;0} \right)\). Tìm giá trị thực của tham số m để ba vectơ \(\overrightarrow a ,\,\overrightarrow b ,\,\overrightarrow c \) đồng phẳng.

A. \(m = 1\)
B. \(m = 0\)
C. \(m = \frac{{ - 1}}{4}\)

D. \(m = \frac{1}{4}\)

Trả lời

Đáp án D

Phương pháp:

Để ba vectơ \(\overrightarrow a ,\,\overrightarrow b ,\,\overrightarrow c \) đồng phẳng thì \(\left[ {\overrightarrow a ,\overrightarrow b } \right].\overrightarrow c = 0\)

Cách giải:

Để ba vectơ \(\overrightarrow a ,\,\overrightarrow b ,\,\overrightarrow c \) đồng phẳng thì \(\left[ {\overrightarrow a ,\overrightarrow b } \right].\overrightarrow c = 0\)

Ta có: \(\left[ {\overrightarrow a ,\overrightarrow b } \right] = \left( { - 4;1;2} \right) \Rightarrow \left[ {\overrightarrow a ,\overrightarrow b } \right].\overrightarrow c = - 4.m + 1.1 + 2.0 = - 4m + 1 = 0 \Leftrightarrow m = \frac{1}{4}\)

Câu hỏi cùng chủ đề

Xem tất cả