Tìm tập hợp tất cả các giá trị của tham só thực m để hàm số y = (mx - 1) / (x - m) đồng biến
65
02/05/2024
Tìm tập hợp tất cả các giá trị của tham só thực m để hàm số \(y = \frac{{mx - 1}}{{x - m}}\) đồng biến trên từng khoảng xác định:
A. \(\left( { - \infty ; - 1} \right)\)
B. \(\left( { - 1;1} \right)\)
C. \(\left( {1; + \infty } \right)\)
D. \(\left( { - \infty ;1} \right)\)
Trả lời
Đáp án B
Phương pháp:
Hàm số đồng biến trên D \( \Leftrightarrow y' \ge 0,\,\,\forall x \in D\) (dấu “=” xảy ra ở hữu hạn điểm trên D)
Cách giải:
TXĐ: \(D = \mathbb{R}\backslash \left\{ m \right\}\)
\(y = \frac{{mx - 1}}{{x - m}} \Rightarrow y' = \frac{{1 - {m^2}}}{{{{\left( {x - m} \right)}^2}}}\)
Với \(y' = 0 \Leftrightarrow 1 - {m^2} = 0 \Leftrightarrow m = \pm 1\) thì \(y' = 0,\,\,\forall m \Rightarrow m = \pm 1\) không thỏa mãn
Vậy để hàm số đồng biến trên từng khoảng xác định thì \(1 - {m^2} > 0 \Leftrightarrow - 1 < m < 1\)