Trong không gian Oxyz, cho hai điểm A(1; 2; -2), B(2; -1; 2). Tìm tọa độ điểm M trên mặt phẳng
62
02/05/2024
Trong không gian Oxyz, cho hai điểm \(A\left( {1;2; - 2} \right),\,\,B\left( {2; - 1;2} \right)\). Tìm tọa độ điểm M trên mặt phẳng Oxy sao cho \(MA + MB\) đạt giá trị nhỏ nhất.
A. \(M\left( {1;1;0} \right)\)
B. \(M\left( {\frac{3}{2};\frac{1}{2};0} \right)\)
C. \(M\left( {2;1;0} \right)\)
D. \(M\left( {\frac{1}{2};\frac{3}{2};0} \right)\)
Trả lời
Đáp án B
Phương pháp:
Lấy \(M \in \left( {Oxy} \right) \Rightarrow MA + MB \ge AB \Rightarrow {\left( {MA + MB} \right)_{\min }} = AB\) khi và chỉ khi M là giao điểm của AB và mặt phẳng \(\left( {Oxy} \right)\)
Cách giải:
\(A\left( {1;2; - 2} \right),\,\,B\left( {2; - 1;2} \right) \Rightarrow \) A, B nằm khác phía so với mặt phẳng \(\left( {Oxy} \right)\,\,\left( {do\,\,{z_A} = - 2 < 0;\,\,{z_B} = 2 > 0} \right)\)
Lấy \(M \in \left( {Oxy} \right) \Rightarrow MA + MB \ge AB \Rightarrow {\left( {MA + MB} \right)_{\min }} = AB\) khi và chỉ khi M là giao điểm của AB và mặt phẳng \(\left( {Oxy} \right)\)
\(\overrightarrow {AB} \left( {1; - 3;4} \right) \Rightarrow \) Phương trình đường thẳng AB: \(\left\{ \begin{array}{l}x = 1 + t\\y = 2 - 3t\\z = - 2 + 4t\end{array} \right.\)
Giả sử \(M\left( {1 + t;2 - 3t; - 2 + 4t} \right),\,\,do\,\,M \in \left( {Oxy} \right) \Rightarrow - 2 + 4t = 0 \Leftrightarrow t = \frac{1}{2} \Rightarrow M\left( {\frac{3}{2};\frac{1}{2};0} \right)\)