Tính y / (2x^2 - xy) + 4x / (y^2 - 2xy)
Tính:
\(\frac{y}{{2{x^2} - xy}} + \frac{{4x}}{{{y^2} - 2xy}}\).
Tính:
\(\frac{y}{{2{x^2} - xy}} + \frac{{4x}}{{{y^2} - 2xy}}\).
\(\frac{y}{{2{x^2} - xy}} + \frac{{4x}}{{{y^2} - 2xy}}\)=\(\frac{y}{{x\left( {2x - y} \right)}} + \frac{{4x}}{{y\left( {y - 2x} \right)}}\)
=\(\frac{{ - {y^2}}}{{xy\left( {y - 2x} \right)}} + \frac{{4{x^2}}}{{xy\left( {y - 2x} \right)}}\) (Mẫu thức chung là: xy(y – 2x))
= \(\frac{{ - {y^2} + 4{x^2}}}{{xy\left( {y - 2x} \right)}}\)= \(\frac{{{{\left( {2x} \right)}^2} - {y^2}}}{{xy\left( {y - 2x} \right)}}\) = \(\frac{{\left( {2x - y} \right)\left( {2x + y} \right)}}{{xy\left( {y - 2x} \right)}}\)
=\(\frac{{ - \left( {y - 2x} \right)\left( {2x + y} \right)}}{{xy\left( {y - 2x} \right)}}\) = \(\frac{{ - 2x - y}}{{xy}}\).