Rút gọn biểu thức P = (x^2 + 2x) / (x^3 - 1) - 1 / (x^2 - x) - 1 / (x^2 + x + 1)

Rút gọn biểu thức \(P = \frac{{{x^2} + 2x}}{{{x^3} - 1}} - \frac{1}{{{x^2} - x}} - \frac{1}{{{x^2} + x + 1}}\) (x ≠ 0, x ≠ 1).

Trả lời

Ta có:

\(P = \frac{{{x^2} + 2x}}{{{x^3} - 1}} - \frac{1}{{{x^2} - x}} - \frac{1}{{{x^2} + x + 1}}\) (x ≠ 0, x ≠ 1)

\( = \frac{{{x^2} + 2x}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} - \frac{1}{{x\left( {x - 1} \right)}} - \frac{1}{{{x^2} + x + 1}}\)

\( = \frac{{\left( {{x^2} + 2x} \right)x}}{{x\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} - \frac{{{x^2} + x + 1}}{{x\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} - \frac{{x\left( {x - 1} \right)}}{{x\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\)

\( = \frac{{\left( {{x^2} + 2x} \right)x - \left( {{x^2} + x + 1} \right) - x\left( {x - 1} \right)}}{{x\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\)

\( = \frac{{{x^3} + 2{x^2} - {x^2} - x - 1 - {x^2} + x}}{{x\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\)\( = \frac{{{x^3} - 1}}{{x\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\)

\( = \frac{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}{{x\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\)\( = \frac{1}{x}\).

Câu hỏi cùng chủ đề

Xem tất cả