Gọi y (cm) là độ dài đoạn thẳng DE. (y > 0).
Ta có: AB = DE + EF
Vì hình hộp chữ nhật 200 cm3 có diện tích đáy là: (x + 1)x (cm2), từ đó suy ra chiều cao EF = \(\frac{{200}}{{x\left( {x + 1} \right)}}\) (cm).
Vì hình hộp chữ nhật 500 cm3 có diện tích đáy là: (x + 2)x (cm2), từ đó suy ra chiều cao AB = \(\frac{{500}}{{x\left( {x + 2} \right)}}\) (cm).
Vì AB = DE + EF
Suy ra DE = AB – EF = \(\frac{{500}}{{x\left( {x + 2} \right)}}\) – \(\frac{{200}}{{x\left( {x + 1} \right)}}\)
= \(\frac{{500\left( {x + 1} \right)}}{{x\left( {x + 1} \right)\left( {x + 2} \right)}} - \frac{{200\left( {x + 2} \right)}}{{x\left( {x + 1} \right)\left( {x + 2} \right)}}\)
= \(\frac{{500\left( {x + 1} \right) - 200\left( {x + 2} \right)}}{{x\left( {x + 1} \right)\left( {x + 2} \right)}}\)
\( = \frac{{500x + 500 - 200x - 400}}{{x\left( {x + 1} \right)\left( {x + 2} \right)}}\)
\( = \frac{{300x + 100}}{{x\left( {x + 1} \right)\left( {x + 2} \right)}}\).
Ta lại có:
CB = EF = \(\frac{{200}}{{x\left( {x + 1} \right)}}\) (cm) (vì hai hình hộp chữ nhật bằng nhau có cùng thể tích 200 cm2).
AC = CB + AB = \(\frac{{200}}{{x\left( {x + 1} \right)}}\) + \(\frac{{500}}{{x\left( {x + 2} \right)}}\)
= \(\frac{{500\left( {x + 1} \right)}}{{x\left( {x + 1} \right)\left( {x + 2} \right)}} + \frac{{200\left( {x + 2} \right)}}{{x\left( {x + 1} \right)\left( {x + 2} \right)}}\)
= \(\frac{{500\left( {x + 1} \right) + 200\left( {x + 2} \right)}}{{x\left( {x + 1} \right)\left( {x + 2} \right)}}\)
\( = \frac{{500x + 500 + 200x + 400}}{{x\left( {x + 1} \right)\left( {x + 2} \right)}}\)
\( = \frac{{700x + 900}}{{x\left( {x + 1} \right)\left( {x + 2} \right)}}\).
Vậy phân thức biểu diễn độ dài độ dài các đoạn thẳng DE và AC là
DE =\(\frac{{300x + 100}}{{x\left( {x + 1} \right)\left( {x + 2} \right)}}\) (cm) và AC = \(\frac{{700x + 900}}{{x\left( {x + 1} \right)\left( {x + 2} \right)}}\) (cm).