Tính tích tất cả các số thực m để hàm số y = | 4/3x^3 - 6x^2 + 8x + m| có giá trị nhỏ nhất trên đoạn [ 0; 3] bằng 18 là      A. 432    B. - 216   C. - 432 D. 288

Tính tích tất cả các số thực \[m\] để hàm số \(y = \left| {\frac{4}{3}{x^3} - 6{x^2} + 8x + m} \right|\) có giá trị nhỏ nhất trên đoạn \(\left[ {0;\,\,3} \right]\) bằng \[18\]
A. \[432\].
B. \[ - 216\].
C. \[ - 432\].
D. \[288\].

Trả lời

Lời giải

Chọn C

+ Xét hàm số \(f\left( x \right) = \frac{4}{3}{x^3} - 6{x^2} + 8x + m\) liên tục trên đoạn \(\left[ {0;\,\,3} \right]\).

+ Ta có \(f'\left( x \right) = 4{x^2} - 12x + 8\).

+ \(f'\left( x \right) = 0 \Leftrightarrow 4{x^2} - 12x + 8 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1 \in \left[ {0;3} \right]\\x = 2 \in \left[ {0;3} \right]\end{array} \right.\).

+ \(f\left( 0 \right) = m;\,\,f\left( 1 \right) = \frac{{10}}{3} + m;\,\,f\left( 2 \right) = \frac{8}{3} + m;\,\,f\left( 3 \right) = 6 + m\).

Khi đó \[\left\{ \begin{array}{l}\mathop {\max }\limits_{\left[ {0;3} \right]} f\left( x \right) = \max \left\{ {f\left( 0 \right);\,f\left( 1 \right);\,f\left( 2 \right);\,f\left( 3 \right)} \right\} = f\left( 3 \right) = m + 6\\\mathop {\min }\limits_{\left[ {0;3} \right]} f\left( x \right) = \min \left\{ {f\left( 0 \right);\,f\left( 1 \right);\,f\left( 2 \right);\,f\left( 3 \right)} \right\} = f\left( 0 \right) = m\end{array} \right.\].

Suy ra \[\mathop {\min }\limits_{\left[ {0;3} \right]} y = \min \left\{ {0\,;\,\left| m \right|;\,\,\left| {m + 6} \right|} \right\}\].

TH1. \[m > 0\].

\[\mathop {\min }\limits_{\left[ {0;3} \right]} y = m \Leftrightarrow m = 18\] (thỏa mãn).

TH2. \[m + 6 < 0 \Leftrightarrow m < - 6\].

\[\mathop {\min }\limits_{\left[ {0;3} \right]} y = - m - 6 \Leftrightarrow - m - 6 = 18 \Leftrightarrow m = - 24\] (thỏa mãn).

TH3. \[m\left( {m + 6} \right) \le 0 \Leftrightarrow - 6 \le m \le 0 \Rightarrow \mathop {\min }\limits_{\left[ {0;3} \right]} y = 0\](loại).

Kết luận: tích các số thực \[m\] thỏa mãn yêu cầu bài toán là: \( - 24.18 = - 432\).

Câu hỏi cùng chủ đề

Xem tất cả