Cho hàm số y = căn bậc hai của x^2 - 2x - 3. Khẳng định nào sau đây là đúng?    A.  maxy = 1    B. maxy = 2      C.  maxy = 0   D. Hàm số không có giá trị lớn nhất.

Cho hàm số \(y = \sqrt {{x^2} - 2x - 3} \). Khẳng định nào sau đây là đúng?
A.  \({\rm{max}}y = 1\).
B.  \({\rm{max}}y = 2\).
C.  \({\rm{max}}y = 0\).
D. Hàm số không có giá trị lớn nhất.

Trả lời
Lời giải
Chọn D
Điều kiện xác định: \({x^2} - 2x - 3 \ge 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x \ge 3}\\{x \le - 1}\end{array}} \right.\)
\( \Rightarrow \) Tập xác định: \(D = \left( { - \infty ; - 1} \right] \cup \left[ {3; + \infty } \right)\)
\(y{\rm{'}} = \frac{{2x - 2}}{{2\sqrt {{x^2} - 2x - 3} }} = \frac{{x - 1}}{{\sqrt {{x^2} - 2x - 3} }} = 0 \Rightarrow \left\{ {\begin{array}{*{20}{l}}{x = 1}\\{{x^2} - 2x - 3 > 0}\end{array}} \right. \Leftrightarrow VN\)
Bảng biến thiên:

Media VietJack

Dựa vào bảng biến thiên, Suy ra KQ.

Câu hỏi cùng chủ đề

Xem tất cả