Tính các giới hạn sau: a) lim 5n + 1/2n; b) lim 6n^2 + 8n + 1/5n^2 + 3; c) lim căn bậc hai của n^2 + 5n + 3/6n + 2
18
17/08/2024
Tính các giới hạn sau:
a) \(\lim \frac{{5n + 1}}{{2n}}\);
b) \(\lim \frac{{6{n^2} + 8n + 1}}{{5{n^2} + 3}}\);
c) \(\lim \frac{{\sqrt {{n^2} + 5n + 3} }}{{6n + 2}}\);
d) \(\lim \left( {2 - \frac{1}{{{3^n}}}} \right)\);
e) \(\lim \frac{{{3^n} + {2^n}}}{{{{4.3}^n}}}\);
g) \(\lim \frac{{2 + \frac{1}{n}}}{{{3^n}}}\).
Trả lời
Lời giải
a) \(\lim \frac{{5n + 1}}{{2n}} = \lim \left( {\frac{5}{2} + \frac{1}{{2n}}} \right) = \lim \frac{5}{2} + \lim \frac{1}{{2n}} = \frac{5}{2}\).
b) \(\lim \frac{{6{n^2} + 8n + 1}}{{5{n^2} + 3}} = \lim \frac{{6 + \frac{8}{n} + \frac{1}{{{n^2}}}}}{{5 + \frac{3}{{{n^2}}}}} = \frac{{\lim \left( {6 + \frac{8}{n} + \frac{1}{{{n^2}}}} \right)}}{{\lim \left( {5 + \frac{3}{{{n^2}}}} \right)}} = \frac{6}{5}\).
c) \(\lim \frac{{\sqrt {{n^2} + 5n + 3} }}{{6n + 2}} = \lim \frac{{\sqrt {1 + \frac{5}{n} + \frac{3}{{{n^2}}}} }}{{6 + \frac{2}{n}}} = \frac{{\lim \sqrt {1 + \frac{5}{n} + \frac{3}{{{n^2}}}} }}{{\lim \left( {6 + \frac{2}{n}} \right)}} = \frac{1}{6}\).
d) \(\lim \left( {2 - \frac{1}{{{3^n}}}} \right) = \lim 2 - \lim {\left( {\frac{1}{3}} \right)^n} = 2 - 0 = 2\).
e) \(\lim \frac{{{3^n} + {2^n}}}{{{{4.3}^n}}} = \lim \frac{{1 + {{\left( {\frac{2}{3}} \right)}^n}}}{4} = \frac{{\lim \left[ {1 + {{\left( {\frac{2}{3}} \right)}^n}} \right]}}{{\lim 4}} = \frac{1}{4}\).
g) \(\lim \frac{{2 + \frac{1}{n}}}{{{3^n}}} = \frac{{\lim \left( {2 + \frac{1}{n}} \right)}}{{\lim {3^n}}} = 0\).