Tính các giá trị lượng giác của góc α, biết cos α = 1/5 và 0 < α < pi/2

Bài 1.4 trang 16 Toán 11 Tập 1Tính các giá trị lượng giác của góc α, biết:

a) cos α = 15 và 0 < α < π2;

b) sin α = 23 và π2<α<π;

c) tan α = 5 và π<α<3π2;

d) cot α = 12 và 3π2<α<2π

Trả lời

a) Vì 0 < α < π2 nên sin α > 0. Mặt khác, từ sin2 α + cos2 α = 1 suy ra

sinα=1cos2α=1152=265.

Do đó, tanα=sinαcosα=26515=26 và cotα=1tanα=126=612.

b) Vì π2<α<π nên cos α < 0. Mặt khác, từ sin2 α + cos2 α = 1 suy ra

cosα=1sin2α=1232=53.

Do đó, tanα=sinαcosα=2353=25=255 và cotα=1tanα=1255=52.

c) Ta có: cotα=1tanα=15=55.

Vì π<α<3π2 nên cos α < 0. Mặt khác, từ 1+tan2α=1cos2α suy ra

cosα=11+tan2α=11+52=66.

Mà tanα=sinαcosαsinα=tanα.cotα=5.66=306.

d) Ta có: tanα=1cotα=112=2.

Vì 3π2<α<2π nên cos α > 0. Mặt khác, từ 1+tan2α=1cos2α suy ra

cosα=11+tan2α=11+22=33.

Mà tanα=sinαcosαsinα=tanα.cotα=2.33=63.

Xem thêm lời giải bài tập Toán lớp 11 Kết nối tri thức hay, chi tiết khác:

Bài 1: Giá trị lượng giác của góc lượng giác

Bài 2: Công thức lượng giác

Bài 3: Hàm số lượng giác

Bài 4: Phương trình lượng giác cơ bản

Bài tập cuối chương 1

Câu hỏi cùng chủ đề

Xem tất cả