Tìm tọa độ giao điểm và góc giữa hai đường thẳng d1 và d2 trong mỗi trường hợp sau: a) d1: x – y + 2 = 0 và d2: x + y + 4 = 0

Bài 3 trang 73 Toán lớp 10 Tập 2: Tìm tọa độ giao điểm và góc giữa hai đường thẳng d1 và d2 trong mỗi trường hợp sau:

a) d1: x – y + 2 = 0 và d2: x + y + 4 = 0;

b) d1Bài 3 trang 73 Toán lớp 10 Tập 2 Chân trời sáng tạo | Giải Toán 10 và d2: x – 3y + 2 = 0;

c) Bài 3 trang 73 Toán lớp 10 Tập 2 Chân trời sáng tạo | Giải Toán 10

Trả lời

a) Gọi A là giao điểm của đường thẳng d1 và d2. Khi đó tọa độ điểm A là nghiệm của hệ phương trình:

Bài 3 trang 73 Toán lớp 10 Tập 2 Chân trời sáng tạo | Giải Toán 10

⇒ A(-3; -1).

Ta có:

Đường thẳng d1: x – y + 2 = 0 có VTPT là n1(1; -1);

Đường thẳng d2: x + y + 4 = 0 có VTPT là n2(1; 1);

Áp dụng công thức tính góc giữa hai đường thẳng ta có:

cos(d1; d2) = Bài 3 trang 73 Toán lớp 10 Tập 2 Chân trời sáng tạo | Giải Toán 10

⇒ (d1; d2) = 90°

Vậy giao điểm của hai đường thẳng d1 và d2 là A(-3; -1) và góc giữa hai đường thẳng d1 và d2 là 90°.

b) Ta có: d1Bài 3 trang 73 Toán lớp 10 Tập 2 Chân trời sáng tạo | Giải Toán 10

⇔ x – 1 = y32

⇔ 2x – 2 = y – 3

⇔ 2x – y + 1 = 0

Gọi B là giao điểm của đường thẳng d1 và d2. Khi đó tọa độ điểm B là nghiệm của hệ phương trình:

Bài 3 trang 73 Toán lớp 10 Tập 2 Chân trời sáng tạo | Giải Toán 10

Ta có:

Đường thẳng d1: 2x – y + 1 = 0 có VTPT là n1(2; -1);

Đường thẳng d2: x – 3y + 2 = 0 có VTPT là n2(1; -3);

Áp dụng công thức tính góc giữa hai đường thẳng ta có:

cos(d1; d2) = Bài 3 trang 73 Toán lớp 10 Tập 2 Chân trời sáng tạo | Giải Toán 10

⇒ (d1; d2) = 45°

Vậy giao điểm của hai đường thẳng d1 và d2 là B15;35 và góc giữa hai đường thẳng d1 và d2 là 45°.

c) Gọi C là giao điểm của đường thẳng d1 và d2. Khi đó tọa độ điểm C là nghiệm của hệ phương trình:

Bài 3 trang 73 Toán lớp 10 Tập 2 Chân trời sáng tạo | Giải Toán 10

Ta có:

Đường thẳng d1Bài 3 trang 73 Toán lớp 10 Tập 2 Chân trời sáng tạo | Giải Toán 10 có VTCP là u1 = (-1; 3);

Đường thẳng d2Bài 3 trang 73 Toán lớp 10 Tập 2 Chân trời sáng tạo | Giải Toán 10 có VTCP là u2 = (3; 1).

Áp dụng công thức tính góc giữa hai đường thẳng ta có:

cos(d1; d2) = Bài 3 trang 73 Toán lớp 10 Tập 2 Chân trời sáng tạo | Giải Toán 10

⇒ (d1; d2) = 90°

Vậy giao điểm của hai đường thẳng d1 và d2 là C52;72 và góc giữa hai đường thẳng d1 và d2 bằng 90°.

Xem thêm lời giải bài tập SGK Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:

Bài 3: Đường tròn trong mặt phẳng toạ độ

Bài 4: Ba đường conic trong mặt phẳng tọa độ

Bài tập cuối chương 9

Bài 1: Không gian mẫu và biến cố

Bài 2: Xác suất của biến cố

Bài tập cuối chương 10

Câu hỏi cùng chủ đề

Xem tất cả