Tìm tất cả các giá trị của tham số thực m để hàm số y = -x^3 - 2x^2 + mx + 1 đạt cực tiểu tại điểm
Tìm tất cả các giá trị của tham số thực m để hàm số \(y = - {x^3} - 2{x^2} + mx + 1\) đạt cực tiểu tại điểm \(x = - 1\)
Tìm tất cả các giá trị của tham số thực m để hàm số \(y = - {x^3} - 2{x^2} + mx + 1\) đạt cực tiểu tại điểm \(x = - 1\)
Đáp án C
Phương pháp:
Hàm số bậc ba \(y = f\left( x \right)\) đạt cực tiểu tại \(x = {x_0}\) khi và chỉ khi \(\left\{ \begin{array}{l}f'\left( {{x_0}} \right) = 0\\f'\left( {{x_0}} \right) > 0\end{array} \right.\)
Cách giải:
\(y = - {x^3} - 2{x^2} + mx + 1 \Rightarrow y' = - 3{x^2} - 4x + m,\,\,\,y'' = - 6x - 4\)
Hàm số \(y = - {x^3} - 2{x^2} + mx + 1\) đạt cực tiểu tại điểm \(x = - 1 \Leftrightarrow \left\{ \begin{array}{l}y' - 1 = 0\\y'' - 1 > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} - 3 + 4 + m = 0\\6 - 4 > 0\end{array} \right. \Leftrightarrow m = - 1\)