Tìm giá trị lớn nhất M của hàm số y = x^4 - 2x^2 + 1 trên đoạn [0; 2]ư A. M = 9 B. M = 10
Tìm giá trị lớn nhất M của hàm số \(y = {x^4} - 2{x^2} + 1\) trên đoạn \(\left[ {0;2} \right]\)
A. \(M = 9\)
B. \(M = 10\)
C. \(M = 1\)
D. \(M = 0\)
Tìm giá trị lớn nhất M của hàm số \(y = {x^4} - 2{x^2} + 1\) trên đoạn \(\left[ {0;2} \right]\)
D. \(M = 0\)
Đáp án A
Phương pháp:
- TXĐ
- Tính nghiệm và tìm các điểm không xác định ' y
- Tìm các giá trị tại \(x = 0,\,\,x = 2\) và các điểm đã tìm ở trên (nằm trong đoạn đang xét) 0, 2 x x
- Xác định giá trị lớn nhất trong các giá trị đó.
Cách giải:
TXĐ: \(D = \mathbb{R}\)
\(y = {x^4} - 2{x^2} + 1 \Rightarrow y' = 4{x^3} - 4x = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = \pm 1\end{array} \right.\)
\(f\left( 0 \right) = 1,\,\,\,f\left( 2 \right) = 9,\,\,\,f\left( 1 \right) = 0 \Rightarrow \mathop {max}\limits_{\left[ {0;2} \right]} y = 9\)