Tam giác ABC có ba đường trung tuyến cắt nhau tại G. Biết rằng điểm G cũng là giao điểm của ba đường trung trực trong tam giác ABC
381
16/11/2023
Bài 3 trang 115 Toán 7 Tập 2: Tam giác ABC có ba đường trung tuyến cắt nhau tại G. Biết rằng điểm G cũng là giao điểm của ba đường trung trực trong tam giác ABC. Chứng minh tam giác ABC đều.
Trả lời
GT
|
ABC,
ba đường trung tuyến cắt nhau tại G,
ba đường trung trực cắt nhau tại G
|
KL
|
Tam giác ABC đều.
|
Chứng minh (Hình vẽ dưới đây):
Vì G là giao điểm của ba đường trung trực và ba đường trung tuyến (giả thiết)
Nên ba đường trung tuyến cũng đồng thời là đường trung trực của tam giác.
Gọi AM, BN, CP lần lượt là ba đường trung trực của tam giác ABC.
Do đó AM BC tại trung điểm M của BC;
BN AC tại trung điểm N của AC;
CP AB tại trung điểm P của AB;
+) Xét tam giác ABM (vuông tại M) và tam giác ACM (vuông tại M) có:
MB = MC (M là trung điểm của BC),
AM là cạnh chung
Do đó ABM = ACM (hai cạnh góc vuông)
Suy ra AB = AC (hai cạnh tương ứng) (1)
+) Xét tam giác BAN (vuông tại N) và tam giác BCN (vuông tại N) có:
NA = NC (N là trung điểm của AC),
BN là cạnh chung
Do đó BAN = BCN (hai cạnh góc vuông)
Suy ra BA = BC (hai cạnh tương ứng) (2)
Từ (1) và (2) suy ra AB = AC = BC
Do đó tam giác ABC là tam giác đều.
Vậy tam giác ABC là tam giác đều.
Xem thêm lời giải bài tập Toán lớp 7 Cánh diều hay, chi tiết khác:
Bài 10: Tính chất ba đường trung tuyến của tam giác
Bài 11: Tính chất ba đường phân giác của tam giác
Bài 12: Tính chất ba đường trung trực của tam giác
Bài 13: Tính chất ba đường cao của tam giác
Bài tập cuối chương 7
Chủ đề 3: Dung tích phổi