Cho tam giác ABC. Đường trung trực của hai cạnh AB và AC cắt nhau tại điểm O nằm trong tam giác. M là trung điểm của BC
399
16/11/2023
Bài 5 trang 115 Toán 7 Tập 2: Cho tam giác ABC. Đường trung trực của hai cạnh AB và AC cắt nhau tại điểm O nằm trong tam giác. M là trung điểm của BC. Chứng minh:
a) OM BC;
b) .
Trả lời
GT
|
ABC, O là giao điểm hai đường trung trực của AB và AC,
O nằm trong tam giác,
M là trung điểm của BC
|
KL
|
a) OM BC;
b) .
|
Chứng minh (Hình vẽ dưới đây):
a) Do ba đường trung trực trong tam giác đồng quy tại một điểm mà tam giác ABC có O là giao điểm hai đường trung trực của đoạn thẳng AB và đoạn thẳng AC (giả thiết).
Do đó đường trung trực của đoạn thẳng BC đi qua O.
Lại có M là trung điểm của BC nên OM là đường trung trực của đoạn thẳng BC.
Do đó OM BC.
Vậy OM BC.
b) Do O nằm trên đường trung trực của đoạn thẳng BC nên OB = OC (tính chất đường trung trực)
Xét OMB và OMC có:
OM là cạnh chung,
MB = MC (M là trung điểm của BC),
OB = OC (chứng minh trên)
Do đó OMB = OMC (c.c.c).
Suy ra (hai góc tương ứng).
Vậy
Xem thêm lời giải bài tập Toán lớp 7 Cánh diều hay, chi tiết khác:
Bài 10: Tính chất ba đường trung tuyến của tam giác
Bài 11: Tính chất ba đường phân giác của tam giác
Bài 12: Tính chất ba đường trung trực của tam giác
Bài 13: Tính chất ba đường cao của tam giác
Bài tập cuối chương 7
Chủ đề 3: Dung tích phổi