Cho tam giác ABC cân tại A. Vẽ đường phân giác AD. Chứng minh AD cũng là đường trung trực của tam giác ABC

Luyện tập 1 trang 113 Toán 7 Tập 2Cho tam giác ABC cân tại A. Vẽ đường phân giác AD. Chứng minh AD cũng là đường trung trực của tam giác ABC.

Trả lời

GT

ABC cân tại A,

AD là phân giác của BAC^ 

KL

AD là đường trung trực của tam giác ABC.

Chứng minh (Hình vẽ dưới đây):

Giải Toán 7 Bài 12 (Cánh diều): Tính chất ba đường trung trực của tam giác (ảnh 1) 

Tam giác ABC cân tại A (giả thiết) nên AB = AC.

Vì AD là đường phân giác của BAC^ (giả thiết) nên BAD^=CAD^ (tính chất tia phân giác)

Xét ABD và ACD có:

AB = AC (chứng minh trên),

BAD^=CAD^ (chứng minh trên),

AD là cạnh chung.

Do đó ABD = ACD (c.g.c).

Suy ra BD = CD (hai cạnh tương ứng) và ADB^=ADC^ (hai góc tương ứng).

+) Vì BD = CD mà D nằm giữa B và C nên D là trung điểm của BC. (1)

+) Vì ADB^=ADC^ và ADB^+ADC^=180° (tính chất hai góc kề bù)

Nên ADB^=ADC^=180°2=90°.

Do đó AD  BC. (2)

Từ (1) và (2) ta có AD vuông góc với BC tại trung điểm D của BC.

Vậy AD là đường trung trực của đoạn thẳng BC.

Xem thêm lời giải bài tập Toán lớp 7 Cánh diều hay, chi tiết khác:

Bài 10: Tính chất ba đường trung tuyến của tam giác

Bài 11: Tính chất ba đường phân giác của tam giác

Bài 12: Tính chất ba đường trung trực của tam giác

Bài 13: Tính chất ba đường cao của tam giác

Bài tập cuối chương 7

Chủ đề 3: Dung tích phổi

Câu hỏi cùng chủ đề

Xem tất cả