Tam giác ABC có ba đường phân giác cắt nhau tại I và AB < AC. Chứng minh góc CBI > góc ACI
Bài 3 trang 111 Toán 7 Tập 2: Tam giác ABC có ba đường phân giác cắt nhau tại I và AB < AC.
a) Chứng minh ;
b) So sánh IB và IC.
Bài 3 trang 111 Toán 7 Tập 2: Tam giác ABC có ba đường phân giác cắt nhau tại I và AB < AC.
a) Chứng minh ;
b) So sánh IB và IC.
GT |
ABC, AB < AC, I là giao điểm của ba đường phân giác |
KL |
a) b) So sánh IB và IC. |
Chứng minh (Hình vẽ dưới đây):
a) Vì BI là đường phân giác của nên .
Vì CI là đường phân giác của nên .
Tam giác ABC có AB < AC nên (quan hệ giữa góc và cạnh đối diện trong một tam giác)
Do đó .
Suy ra .
Vậy
b) Vì (chứng minh câu a), mà nên .
Tam giác BIC có nên IB < IC (quan hệ giữa cạnh và góc đối diện trong một tam giác)
Vậy IB < IC.
Xem thêm lời giải bài tập Toán lớp 7 Cánh diều hay, chi tiết khác:
Bài 9: Đường trung trực của một đoạn thẳng
Bài 10: Tính chất ba đường trung tuyến của tam giác
Bài 11: Tính chất ba đường phân giác của tam giác
Bài 12: Tính chất ba đường trung trực của tam giác