Số đường tiệm cận ngang của đồ thị hàm số y = x + 1 + căn bậc hai x^2 + 2x + 3

Số đường tiệm cận ngang của đồ thị hàm số \(y = x + 1 + \sqrt {{x^2} + 2x + 3} \)

A. 0

B. 1

C. 3

D. 2

Trả lời

Đáp án B

Phương pháp:

* Định nghĩa tiệm cận ngang của đồ thị hàm số \(y = f\left( x \right)\)

Nếu \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = a\) hoặc \(\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = a \Rightarrow y = a\) là tiệm cận ngang của đồ thị hàm số.

Cách giải:

TXĐ: \(D = R\)

\(\mathop {\lim }\limits_{x \to + \infty } \left( {x + 1\sqrt {{x^2} + 2x + 3} } \right) = \mathop {\lim }\limits_{x \to - \infty } x\left( {1 + \frac{1}{x} + \sqrt {1 + \frac{2}{x} + \frac{3}{{{x^2}}}} } \right) = + \infty \)

\(\mathop {\lim }\limits_{x \to - \infty } \left( {x + 1\sqrt {{x^2} + 2x + 3} } \right) = \mathop {\lim }\limits_{x \to - \infty } \left( {\frac{{{{\left( {x + 1} \right)}^2} - \left( {{x^2} + 2x + 3} \right)}}{{x + 1 - \sqrt {{x^2} + 2x + 3} }}} \right) = \mathop {\lim }\limits_{x \to - \infty } \frac{{ - 2}}{{x + 1 - \sqrt {{x^2} + 2x + 3} }}\)

\( = \mathop {\lim }\limits_{x \to - \infty } \frac{{\frac{{ - 2}}{x}}}{{1 + \frac{1}{x} + \sqrt {1 + \frac{2}{x} + \frac{3}{{{x^2}}}} }} = 0\)

Vậy, đồ thị hàm số có tất cả 1 tiệm cận ngang là đường thẳng \(y = 0\)

Câu hỏi cùng chủ đề

Xem tất cả