Quan sát Hình 6, chứng minh rằng: ∆MNP ᔕ ∆DPC

Bài 2 trang 68 SBT Toán 8 Tập 2: Quan sát Hình 6, chứng minh rằng:

a) ∆MNP ᔕ ∆DPC.

b) NP ⊥ PC.

Quan sát Hình 6, chứng minh rằng: a) Tam giác MNP đồng dạng tam giác DPC

Trả lời

a) Ta có MNDP=128=32 và PNCP=1510=32.

Xét ∆MNP vuông tại M và ∆DPC vuông tại D có MNDP=PNCP.

Do đó ∆MNP ᔕ ∆DPC.

b) Ta có ∆MNP ᔕ ∆DPC, suy ra MNP^=DPC^.

Mà MNP^+MPN^=90° (∆MNP vuông tại M).

Do đó DPC^+MPN^=90°, suy ra NP ⊥ PC.

Xem thêm các bài giải sách bài tập Toán 8 Chân trời sáng tạo hay, chi tiết khác:

Bài 1: Hai tam giác đồng dạng

Bài 2: Các trường hợp đồng dạng của hai tam giác

Bài 3: Các trường hợp đồng dạng của hai tam giác vuông

Bài 4: Hai hình đồng dạng

Bài tập cuối chương 8

Bài 1: Mô tả xác suất bằng tỉ số

Câu hỏi cùng chủ đề

Xem tất cả