Hàm số y = (x^2 - 2x + 1)e^2x nghịch biến trên khoảng nào sau đây A. (0; 1) B. (0; + vô cùng)

Hàm số \(y = \left( {{x^2} - 2x + 1} \right){e^{2x}}\) nghịch biến trên khoảng nào sau đây?

A. \(\left( {0;1} \right)\)
B. \(\left( {0; + \infty } \right)\)
C. \(\left( { - \infty ;0} \right)\)
D. \(\left( { - \infty ; + \infty } \right)\)

Trả lời

Đáp án A

Phương pháp:

Phương pháp xét sự đồng biến, nghịch biến của các hàm số:

- Bước 1: Tìm tập xác định, tính \(f'\left( x \right)\)

- Bước 2: Tìm các điểm tại đó \(f'\left( x \right) = 0\) hoặc \(f'\left( x \right)\) không xác định

- Bước 3: Sắp xếp các điểm đó theo thứ tự tăng dần và lập bảng biến thiên

- Bước 4: Kết luận về các khoảng đồng biến, nghịch biến của hàm số.

Cách giải:

\(y = \left( {{x^2} - 2x + 1} \right){e^{2x}} \Rightarrow y' = \left( {2x - 2} \right){e^{2x}} + \left( {{x^2} - 2x + 1} \right)2{e^{2x}} = 2.\left( {{x^2} - x} \right).{e^{2x}}\)

\(y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 1\end{array} \right.\)

Bảng xét dấu y’:

Hàm số y = (x^2 - 2x + 1)e^2x nghịch biến trên khoảng nào sau đây A. (0; 1) B. (0; + vô cùng) (ảnh 1)

Hàm số \(y = \left( {{x^2} - 2x + 1} \right){e^{2x}}\) nghịch biến trên khoảng \(\left( {0;1} \right)\)

Câu hỏi cùng chủ đề

Xem tất cả