Hàm số y = căn bậc hai (x^2 - x) nghịch biến trên khoảng A. (- vô cùng; 0) B. (1; + vô cùng)

Hàm số \(y = \sqrt {{x^2} - x} \) nghịch biến trên khoảng

A. \(\left( { - \infty ;0} \right)\)
B. \(\left( {1; + \infty } \right)\)
C. \(\left( { - \infty ;\frac{1}{2}} \right)\)

D. \(\left( {0;1} \right)\)

Trả lời

Đáp án A

Phương pháp:

- Tìm TXĐ

- Tính y’

- Lập bảng xét dấu y’

- Đánh giá khoảng nghịch biến.

Cách giải:

TXĐ: \(D = \left( { - \infty ;0} \right) \cup \left( {1; + \infty } \right)\)

\(y = \sqrt {{x^2} - x} \Rightarrow y' = \frac{{2x - 1}}{{2\sqrt {{x^2} - x} }} = 0 \Leftrightarrow x = \frac{1}{2}\)

Bảng xét dấu y’:

Hàm số y = căn bậc hai (x^2 - x) nghịch biến trên khoảng A. (- vô cùng; 0) B. (1; + vô cùng) (ảnh 1)

Hàm số \(y = \sqrt {{x^2} - x} \) nghịch biến trên khoảng \(\left( { - \infty ;0} \right)\)

Câu hỏi cùng chủ đề

Xem tất cả