Hàm số nào sau đây nghịch biến trên (0; + vô cùng) A. y = x^2 B. y = (căn bậc hai 2)^x

Hàm số nào sau đây nghịch biến trên \(\left( {0; + \infty } \right)\)

A. \(y = {x^2}\)
B. \(y = {\sqrt 2 ^x}\)
C. \(y = \ln \left( {1 + {x^2}} \right)\)

D. \(y = {x^{\sqrt 2 }}\)

Trả lời

Đáp án C

Phương pháp:

Xét từng đáp án. Hàm số nào có \(y' \le 0\,\,\forall x \in \left( {0; + \infty } \right)\) thì nghịch biến trên \(\left( {0; + \infty } \right)\)

Cách giải:

+) \(y = {x^2}\) có đồ thị là parabol có đỉnh \(I\left( {0;0} \right)\), nghịch biến trên \(\left( { - \infty ;0} \right)\) và đồng biến trên \(\left( {0; + \infty } \right)\)

+) \(y = {\sqrt 2 ^x}\)\(a = \sqrt 2 > 1 \Rightarrow \) Hàm số đồng biến trên R

+) \(y = \ln \left( {1 + {x^2}} \right),\,\,\left( {D = R} \right) \Rightarrow y' = \frac{{2x}}{{{x^2} + 1}}\)

\( \Rightarrow y' < 0,\,\,\forall x \in \left( {0; + \infty } \right) \Rightarrow \) Hàm số nghịch biến trên \(\left( {0; + \infty } \right)\)

+) \(y = {x^{\sqrt 2 }},\,\,\left( {D = \left( {0; + \infty } \right)} \right) \Rightarrow y' = \sqrt 2 {x^{\sqrt 2 - 1}} > 0,\,\,\forall x \in D \Rightarrow \) Hàm số đồng biến trên \(\left( {0; + \infty } \right)\)

Câu hỏi cùng chủ đề

Xem tất cả